• Title/Summary/Keyword: TYPE II Optimal Normal Basis

Search Result 8, Processing Time 0.026 seconds

NAP and Optimal Normal Basis of Type II and Efficient Exponentiation in $GF(2^n)$ (NAF와 타입 II 최적정규기저를 이용한 $GF(2^n)$ 상의 효율적인 지수승 연산)

  • Kwon, Soon-Hak;Go, Byeong-Hwan;Koo, Nam-Hun;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.21-27
    • /
    • 2009
  • We present an efficient exponentiation algorithm for a finite field $GF(2^n)$ determined by an optimal normal basis of type II using signed digit representation of the exponents. Our signed digit representation uses a non-adjacent form (NAF) for $GF(2^n)$. It is generally believed that a signed digit representation is hard to use when a normal basis is given because the inversion of a normal element requires quite a computational delay. However our result shows that a special normal basis, called an optimal normal basis (ONB) of type II, has a nice property which admits an effective exponentiation using signed digit representations of the exponents.

Basis Translation Matrix between Two Isomorphic Extension Fields via Optimal Normal Basis

  • Nogami, Yasuyuki;Namba, Ryo;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.326-334
    • /
    • 2008
  • This paper proposes a method for generating a basis translation matrix between isomorphic extension fields. To generate a basis translation matrix, we need the equality correspondence of a basis between the isomorphic extension fields. Consider an extension field $F_{p^m}$ where p is characteristic. As a brute force method, when $p^m$ is small, we can check the equality correspondence by using the minimal polynomial of a basis element; however, when $p^m$ is large, it becomes too difficult. The proposed methods are based on the fact that Type I and Type II optimal normal bases (ONBs) can be easily identified in each isomorphic extension field. The proposed methods efficiently use Type I and Type II ONBs and can generate a pair of basis translation matrices within 15 ms on Pentium 4 (3.6 GHz) when $mlog_2p$ = 160.

  • PDF

A New Parallel Multiplier for Type II Optimal Normal Basis (타입 II 최적 정규기저를 갖는 유한체의 새로운 병렬곱셈 연산기)

  • Kim Chang-Han;Jang Sang-Woon;Lim Jong-In;Ji Sung-Yeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.83-89
    • /
    • 2006
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in GF($2^m$). In this paper, we propose a new, simpler, parallel multiplier over GF($2^m$) having a type II optimal normal basis, which performs multiplication over GF($2^m$) in the extension field GF($2^{2m}$). The time and area complexity of the proposed multiplier is same as the best of known type II optimal normal basis parallel multiplier.

Type II Optimal Normal Basis Multipliers in GF(2n) (타입 II 최적 정규기저를 갖는 GF(2n)의 곱셈기)

  • Kim, Chang Han;Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.979-984
    • /
    • 2015
  • In this paper, we proposed a Semi-Systolic multiplier of $GF(2^n)$ with Type II optimal Normal Basis. Comparing the complexity of the proposed multiplier with Chiou's multiplier proposed in 2012, it is saved $2n^2+44n+26$ in total transistor numbers and decrease 4 clocks in time delay. This means that, for $GF(2^{333})$ of the field recommended by NIST for ECDSA, the space complexity is 6.4% less and the time complexity of the 2% decrease. In addition, this structure has an advantage as applied to Chiou's method of concurrent error detection and correction in multiplication of $GF(2^n)$.

A Low Complexity Bit-Parallel Multiplier over Finite Fields with ONBs (최적정규기저를 갖는 유한체위에서의 저 복잡도 비트-병렬 곱셈기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.409-416
    • /
    • 2014
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. The finite field $GF(2^m)$ with type I optimal normal basis(ONB) has the disadvantage not applicable to some cryptography since m is even. The finite field $GF(2^m)$ with type II ONB, however, such as $GF(2^{233})$ are applicable to ECDSA recommended by NIST. In this paper, we propose a bit-parallel multiplier over $GF(2^m)$ having a type II ONB, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{2m})$. The time and area complexity of the proposed multiplier is the same as or partially better than the best known type II ONB bit-parallel multiplier.

A Low Complexity and A Low Latency Systolic Arrays for Multiplication in GF($2^m$) Using An Optimal Normal Basis of Type II (타입 II ONB를 이용한 GF($2^m$)상의 곱셈에 대한 낮은 복잡도와 작은 지연시간을 가지는 시스톨릭 어레이)

  • Kwon, Soon-Hak;Kwon, Yun-Ki;Kim, Chang-Hoon;Hong, Chun-Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.140-148
    • /
    • 2008
  • Using the self duality of an optimal normal basis(ONB) of type II, we present a bit parallel and bit serial systolic arrays over GF($2^m$) which has a low hardware complexity and a low latency. We show that our multiplier has a latency m+1 and the basic cell of our circuit design needs 5 latches(flip-flops). Comparing with other arrays of the same kinds, we find that our array has significantly reduced latency and hardware complexity.

Modified SMPO for Type-II Optimal Normal Basis (Type-II 최적 정규기저에서 변형된 SMPO)

  • Yang Dong-Jin;Chang Nam-Su;Ji Sung-Yeon;Kim Chang-Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.2
    • /
    • pp.105-111
    • /
    • 2006
  • Cryptographic application and coding theory require operations in finite field $GF(2^m)$. In such a field, the area and time complexity of implementation estimate by memory and time delay. Therefore, the effort for constructing an efficient multiplier in finite field have been proceeded. Massey-Omura proposed a multiplier that uses normal bases to represent elements $CH(2^m)$ [11] and Agnew at al. suggested a sequential multiplier that is a modification of Massey-Omura's structure for reducing the path delay. Recently, Rayhani-Masoleh and Hasan and S.Kwon at al. suggested a area efficient multipliers for modifying Agnew's structure respectively[2,3]. In [2] Rayhani-Masoleh and Hasan proposed a modified multiplier that has slightly increased a critical path delay from Agnew at al's structure. But, In [3] S.Kwon at al. proposed a modified multiplier that has no loss of a time efficiency from Agnew's structure. In this paper we will propose a multiplier by modifying Rayhani-Masoleh and Hassan's structure and the area-time complexity of the proposed multiplier is exactly same as that of S.Kwon at al's structure for type-II optimal normal basis.

Classification accuracy measures with minimum error rate for normal mixture (정규혼합분포에서 최소오류의 분류정확도 측도)

  • Hong, C.S.;Lin, Meihua;Hong, S.W.;Kim, G.C.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.619-630
    • /
    • 2011
  • In order to estimate an appropriate threshold and evaluate its performance for the data mixed with two different distributions, nine kinds of well-known classification accuracy measures such as MVD, Youden's index, the closest-to- (0,1) criterion, the amended closest-to- (0,1) criterion, SSS, symmetry point, accuracy area, TA, TR are clustered into five categories on the basis of their characters. In credit evaluation study, it is assumed that the score random variable follows normal mixture distributions of the default and non-default states. For various normal mixtures, optimal cut-off points for classification measures belong to each category are obtained and type I and II error rates corresponding to these cut-off points are calculated. Then we explore the cases when these error rates are minimized. If normal mixtures might be estimated for these kinds of real data, we could make use of results of this study to select the best classification accuracy measure which has the minimum error rate.