• 제목/요약/키워드: TYLCV

검색결과 37건 처리시간 0.025초

Upregulation of Endosymbiont Densities in Bemisia tabaci by Acquisition of Tomato Yellow Leaf Curl Virus

  • Jahan, S.M. Hemayet;Lee, Kyeong-Yeoll
    • Current Research on Agriculture and Life Sciences
    • /
    • 제30권2호
    • /
    • pp.124-130
    • /
    • 2012
  • Sweetpotato whitefly, Bemisia tabaci, is a vector of more than 100 plant-diseased viruses, as well as a serious pest of various horticultural plants. This species harbors a primary endosymbiont Portiera along with several secondary endosymbionts such as Cardinium and Hamiltonella. We investigated whether or not TYLCV acquisition alters the densities of endosymbionts in the body of B. tabaci using quantitative real-time PCR. Our results showed that the densities of both Cardinium and Hamiltonella, but not Portiera, increased upon acquisition of TYLCV. In addition, expression of GroEL, a molecular chaperone produced by Hamiltonella, was significantly upregulated in TYLCV-infected whiteflies. Our results suggest that endosymbionts may play an important role in TYLCV transmission mechanism within the body of B. tabaci.

  • PDF

Molecular Characterization of Tomato Yellow Leaf Curl Virus in Korea and the Construction of an Infectious Clone

  • Lee, Bong Choon;Ueda, Shigenori;Yoon, Young-Nam;Shin, Dong Bum;Kang, Hang-Won
    • 식물병연구
    • /
    • 제20권3호
    • /
    • pp.219-222
    • /
    • 2014
  • Several tomato production regions in Korea were surveyed for tomato yellow leaf curl disease (TYLCD). Tomato leaf samples showing TYLCD-like symptoms were collected from Tongyeong (To), Geoje (Gi), and Gimhae (Gh) cities of the southern part of Korea. Tomato yellow leaf curl virus (TYLCV) was detected and the full-length genomes of the isolates were sequenced. The TYLCV isolates found in Korea shared high sequence identity (> 99%) with TYLCV-IL [JR:Omu:Ng] (AB110217). Phylogenetic relationship analysis revealed that they formed two groups (with little genetic variability), and the To, Gj, and Gh isolates belonged to the TYLCV-IL group. An infectious clone of TYLCV-To (JQ013089) was constructed and agroinoculated into Nicotiana benthamiana, Nicotiana tabacum var. Xanthi, Petunia hybrida, Capsicum annuum, and Lycopersicon esculentum cv. Hausumomotaro. Agroinfection with a dimeric infectious clone of TYLCV-To induced severe leaf curling and stunting symptoms in these plants, excluding C. annuum. Tomato plants then developed typical yellow leaf curl symptoms.

토마토품종의 토마토황화잎말림바이러스병에 대한 저항성 평가 (Resistance Evaluation of Commmercial Tomato Cultivars against Tomato yellow leaf curl virus)

  • 고숙주;김효정;이진희;마경철;최덕수;박영훈;최승국;김미경;최홍수
    • 식물병연구
    • /
    • 제22권4호
    • /
    • pp.297-302
    • /
    • 2016
  • 토마토황화잎말림바이러스(TYLCV)는 토마토에서 큰 경제적 손실을 초래하는 바이러스 병이다. 이병은 약제방제가 되지 않기 때문에 매개충인 담배가루이를 방제하거나 저항성 품종을 재배해야 한다. 본 시험은 시중에 유통 중인 토마토 품종에 대해 토마토황화잎말림바이러스에 저항성을 평가하였다. 토마토 품종별로 TYLCV 저항성 마커로 유전자 Ty-1과Ty-3 분석을 실시하였고, 아그로주입법으로 생물검정을 실시하였다. 대추형은 티티찰, TY 티니, TY 생생 II, TY 센스큐 등 4종, 방울형은 TY 엔도르핀, TY 스마프사마, 티아라 TY, 올레 TY 등 4종, 완숙형은 TY 킹덤, TY 에이스, TY 홈런, TY 알토랑, 도테랑 TY 위너, 스틱스 TY 등 6종에서 저항성유전자를 확인하였다. 유묘검정은 대추형과 방울형은 모두 유전자 분석결과와 일치하였으나, 완숙형은 저항성 품종에서도 일부 병징이 발현되는 경향이었다. 품종별 수량성은 대추형은 티티찰 대비 TY 티니가 우수하였고, 방울형은 스마일 대비 TY 스마프사마, 티아라 TY이 우수하였으며, 완숙형은 다복 대비 TY 에이스, TY 킹덤 등이 우수한 품종이었다.

토마토황화잎말림바이러스병에 대한 저항성 품종과 항바이러스 활성 물질 3종의 효과 검증 (Efficacy of Three Antiviral Agents and Resistant Cultivars on Tomato Yellow Leaf Curl Virus in Tomato)

  • 권용남;차병진;김미경
    • 식물병연구
    • /
    • 제28권2호
    • /
    • pp.82-91
    • /
    • 2022
  • 최근에는 작물의 유도 저항성을 이용한 항바이러스제 개발에 관한 많은 연구가 수행되고 있으나 실제 농업현장에 널리 보급되지 못하고 있는 실정이다. 본 실험은 시설토마토 재배현장에 외생 살리실산, 키토산, 유제놀 처리에 따른 토마토황화잎말림바이러스(Tomato yellow leaf curl virus, TYLCV) 감염억제효과를 검증하고자 수행되었다. 실내검정에서 TYLCV에 감수성 품종인 '슈퍼도태랑'은 항바이러스제 처리 후 TYLCV에 감염된지 12일 후 VP (virus infected control plants)에서 바이러스 증상이 나타나기 시작했다. 접종 32일 후 TYLCV 발병도는 VP에서 98.8%였고, SAT (2 mM salicylic acid)+VP, EGT (200 ㎍/ml eugenol)+VP에서는 각각 98.8%, 98.7%로 발병도가 높았으나, CHT (0.1% chitosan)+VP는 85.7%로 다른 처리들과 통계적으로 유의한 차이를 보였다. 그러나 TYLCV 농도는 CHT+VP에서 OD값이 0.3으로 오히려 가장 높게 나타났으며, 토마토의 초장, 지상부 및 지하부 생체중에서도 뚜렷한 효과를 보이지 않았다. 여름작형 시설재배지에서 도태랑 계열의 토마토품종 '도태랑솔라'를 사용하여 항바이러스 3종의 효과를 조사한 결과, 수확기에 모든 처리구에서 100.0%에 가까운 TYLCV 감염률은 나타냈으며, 수확량에도 처리간의 통계적 유의차가 인정되지는 않았다. 이와 대조적으로 Ty-1과 Ty-3a 유전자를 보유한 TYLCV에 내병성 품종인 'TY자이언츠'는 저항성 유묘검정의 전 조사기간 동안 바이러스 증상이 전혀 관찰되지 않았고, 식물체내 바이러스 농도도 무접종 수준이었다. 본 실험 결과 'TY자이언츠' 품종은 TYLCV 발생이 만연한 지역 및 재배시기에 감수성 품종을 대체할 수 있을 것으로 생각된다. 반면, 저항성 유도물질인 살리실산, 유제놀, 키토산의 항바이러스 효과는 입증되지 않았기 때문에, 아직 시설토마토 재배현장에 적용하기는 어려울 것으로 판단된다.

Natural Occurrence of Tomato leaf curl New Delhi virus in Iranian Cucurbit Crops

  • Yazdani-Khameneh, Sara;Aboutorabi, Samaneh;Shoori, Majid;Aghazadeh, Azin;Jahanshahi, Parastoo;Golnaraghi, Alireza;Maleki, Mojdeh
    • The Plant Pathology Journal
    • /
    • 제32권3호
    • /
    • pp.201-208
    • /
    • 2016
  • The main areas for field-grown vegetable production in Iran were surveyed during the years of 2012-2014 to determine the occurrence of begomoviruses infecting these crops. A total of 787 leaf samples were collected from vegetables and some other host plants showing virus-like symptoms and tested by an enzymelinked immunosorbent assay (ELISA) using polyclonal antibodies produced against Tomato yellow leaf curl virus (TYLCV). According to the ELISA results, 81 samples (10.3%) positively reacted with the virus antibodies. Begomovirus infections were confirmed by polymerase chain reaction (PCR) using previously described TYLCV-specific primer pair TYLCV-Sar/TYLCV-Isr or universal primer pair Begomo-F/Begomo-R. The PCR tests using the primer pair TYLCV-Sar/TYLCV-Isr resulted in the amplification of the expected fragments of ca. 0.67-kb in size for ELISA-positive samples tested from alfalfa, pepper, spinach and tomato plants, confirming the presence of TYLCV. For one melon sample, having a week reaction in ELISA and no reaction in PCR using TYLCV-specific primers, the PCR reaction using the primer pair Begomo-F/Begomo-R resulted in the amplification fragments of the expected size of ca. 2.8 kb. The nucleotide sequences of the DNA amplicons derived from the isolate, Kz-Me198, were determined and compared with other sequences available in GenBank. BLASTN analysis confirmed the begomovirus infection of the sample and showed 99% identities with Tomato leaf curl New Delhi virus (ToLCNDV); phylogenetic analysis supported the results of the database searches. This study reports the natural occurrence of TYLCV in different hosts in Iran. Our results also reveal the emergence of ToLCNDV in Iranian cucurbit crops.

우리나라 토마토에 발생한 토마토황화잎말림바이러스(Tomato yellow leaf curl geminivirus)의 초간편 Virion Capture(VC)/PCR 진단법 (Convenient Virion Capture (VC)/PCR for Tomato yellow leaf curl geminivirus Occurring on Tomato in Korea)

  • 조점덕;김태성;김주희;최국선;정봉남;최홍수;김정수
    • 식물병연구
    • /
    • 제14권3호
    • /
    • pp.233-237
    • /
    • 2008
  • 국내에서 최근 발견된 Tomato yellow leaf curl virus(TYLCV)가 토마토에 발생하여 큰 피해가 발생하였다. TYLCV의 피해 발생 예방을 위하여 농업현장의 연구지도연구기관에서 쉽고 간편하게 사용할 수 있는 조기 정밀 유전자 진단기술 개발은 매우 중요하다. TYLCV에 대해 특이적 프라이머를 제작하고 특별한 핵산분리 기술이나 도구가 필요 없는 빠르고 정확하며 경제적인 VC/PCR 진단법을 이용한 유전자 진단법을 개발하였다. TYLCV 진단용 프라이머를 22개 제작하여 감염주 및 건전 토마토의 전체 핵산을 이용해 특이성 검정으로 PCR용으로 9점을 선발하였고, VC/PCR 진단법 용으로 9종을 선발하였다. 이러한 두 가지 진단법에 모두 특이적인 프라이머를 6종을 선발한 후 TLCV로 알려진 다른 Geminivirus와의 특이성 검정결과로 총 4종이 최종 선발하였다. 이들 중 Deng(540,541) 프라이머는 Ceminivirus를 진단할 수 있는 degenerate 프라이머로 VC/PCR진단법이 개발 되었다.

A Rapid and Efficient Method for Construction of an Infectious Clone of Tomato yellow leaf curl virus

  • Bang, Bongjun;Lee, Jongyun;Kim, Sunyoung;Park, Jungwook;Nguyen, Thao Thi;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제30권3호
    • /
    • pp.310-315
    • /
    • 2014
  • Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is responsible for one of the most devastating viral diseases in tomato-growing countries and is becoming a serious problem in many subtropical and tropical countries. The climate in Korea is getting warmer and developing subtropical features in response to global warming. These changes are being accompanied by TYLCV, which is now becoming a large problem in the Korean tomato industry. The most effective way to reduce damage caused by TYLCV is to breed resistant varieties of tomatoes. To accomplish this, it is necessary to establish a simple inoculation technique for the efficient evaluation of resistance to TYLCV. Here, we present the rolling circle amplification (RCA) method, which employs a bacteriophage using phi-29 DNA polymerase for construction of infectious TYLCV clones. The RCA method is simple, does not require sequence information for cloning, and is less expensive and time consuming than conventional PCR based-methods. Furthermore, RCA-based construction of an infectious clone can be very useful to other emerging and unknown geminiviruses in Korea.

Differences in isolates of Tomato yellow leaf curl virus in tomato fields located in Daejeon and Chungcheongnam-do between 2017 and 2018

  • Oh, June-Pyo;Choi, Go-Woon;Kim, Jungkyu;Oh, Min-Hee;Kim, Kang-Hee;Park, Jongseok;Domier, Leslie L.;Hammond, John;Lim, Hyoun-Sub
    • 농업과학연구
    • /
    • 제46권3호
    • /
    • pp.507-517
    • /
    • 2019
  • To follow up on a 2017 survey of tomato virus diseases, samples with virus-like symptoms were collected from the same areas (Buyeo-gun, Chungchungnam-Do and Daejeon, Korea) in 2018. While in 2017 mixed infections of Tomato mosaic virus with either Tomato yellow leaf curl virus (TYLCV) or Tomato chlorosis virus were detected, only TYLCV was detected in symptomatic samples in 2018. TYLCV amplicons of c.777 bp representing the coat protein (CP) coding region were cloned from the TYLCV positive samples, and the sequence data showed a 97.17% to 98.84% nucleotide and 98.45% to 99.22% amino acid identity with the 2017 Buyeo-gun isolate (MG787542), which had the highest amino acid (aa) sequence identity of up to 99.2% with four 2018 Buyeo-gun sequences (MK521830, MK521833, MK521834, and MK521835). The lowest aa sequence identity of 98.45% was found in a 2018 Daejeon isolate (MK521836); the distance between Buyeo-gun and Daejeon is about 45 km. Phylogenetic analysis indicated that the currently reported CP sequences are most closely related to Korean sequences from Masan (HM130912), Goseong (JN680149), Busan (GQ141873), Boseong (GU325634), and the 2017 isolate TYLCV-N (MG787543) in the 'Japan' cluster of TYLCV isolates and distinct from the 'China' cluster isolates from Nonsan (GU325632), Jeonju (HM130913) and Jeju (GU325633, HM130914). Our survey data from 2017 and 2018 suggest that TYLCV has become established in Korea and may be spread by whitefly vectors from weed reservoirs within the farm environment.

지역별 기후변화에 따른 토마토 황화잎말림병 피해 분석 (An Analysis of TYLCV Damages under Regional Climate Changes)

  • 윤지윤;김소윤;김관수;김홍석;안동환
    • 농촌계획
    • /
    • 제21권4호
    • /
    • pp.35-43
    • /
    • 2015
  • The purpose of the research is to analyze damages of TYLCV (Tomato Yellow Leaf Curl Virus) in the context of climate changes and to find the spatial distribution of the damages and characteristics of regions. A TYLCV is generally known for a plant disease related to temperature. Its occurrence rate increases when temperature rises. This disease first occurred in 2008 and rapidly spread nationwide. Due to the spread of a TYLCV, a number of Tomato farms in Korea were damaged severely. To analyze damages of the pest in the context of climate changes, this research estimated production loss under the current situation and RCP scenarios. Additionally, Hot Spot Analysis, LISA, and Cluster analysis were conducted to find spatial distribution and properties of largely damaged regions under RCP scenarios. The results explained that additional production loss was estimated differently by regions with the same temperature rising scenario. Also, largely damaged regions are spatially clustered and factors causing large damages were different across regional cluster groups. It means that certain regions can be damaged more than others by diseases and pests. Furthermore, pest management policy should reflect the properties of each region such as climate conditions, cultivate environment and production technologies. The findings from this research can be utilized for developing rural management plans and pest protection policies.

Physiology and Gene Expression Analysis of Tomato (Solanum lycopersicum L.) Exposed to Combined-Virus and Drought Stresses

  • Samra Mirzayeva;Irada Huseynova;Canan Yuksel Ozmen;Ali Ergul
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.466-485
    • /
    • 2023
  • Crop productivity can be obstructed by various biotic and abiotic stresses and thus these stresses are a threat to universal food security. The information on the use of viruses providing efficacy to plants facing growth challenges owing to stress is lacking. The role of induction of pathogen-related genes by microbes is also colossal in drought-endurance acquisition. Studies put forward the importance of viruses as sustainable means for defending plants against dual stress. A fundamental part of research focuses on a positive interplay between viruses and plants. Notably, the tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) possess the capacity to safeguard tomato host plants against severe drought conditions. This study aims to explore the combined effects of TYLCV, ToCV, and drought stress on two tomato cultivars, Money Maker (MK, UK) and Shalala (SH, Azerbaijan). The expression of pathogen-related four cellulose synthase gene families (CesA/Csl) which have been implicated in drought and virus resistance based on gene expression analysis, was assessed using the quantitative real-time polymerase chain reaction method. The molecular tests revealed significant upregulation of Ces-A2, Csl-D3,2, and Csl-D3,1 genes in TYLCV and ToCV-infected tomato plants. CesA/Csl genes, responsible for biosynthesis within the MK and SH tomato cultivars, play a role in defending against TYLCV and ToCV. Additionally, physiological parameters such as "relative water content," "specific leaf weight," "leaf area," and "dry biomass" were measured in dual-stressed tomatoes. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.