• Title/Summary/Keyword: TVD 제한함수

Search Result 4, Processing Time 0.016 seconds

Application of TVD-McCormack Scheme to Analysis of Dam-Break Problems (댐붕괴 문제의 해석에 관한 TVD-McCormack기법의 적용)

  • Lee, Jong-Kyu;Kim, Tae-Kwan
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.365-374
    • /
    • 2003
  • This is a study on application of a TVD-Mccormack scheme for the computation of one-dimensional dam-break flows. The TVD scheme not only has the ability to damp out oscillations, but also does not contain terms with adjustable parameters. Moreover, the TVD-McCormack scheme does not cause any additional difficulty when dealing with the source term of the equation and retains second-order accuracy in both space and time. In this study, by appropriately designing the limiter functions, the TVD property can be achieved, and numerical oscillations near a jump discontinuities can be eliminated or reduced. Also, this numerical scheme has less computational errors when the direction of the predictor-corrector step is in the same direction as the shock wane propagation.

Development of Multi-dimensional Limiting Process for Multi-dimensional Compressible Flow (다차원 압축성 유동 해석을 위한 MLP 기법의 개발)

  • 윤성환;김종암;김규홍
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.1-11
    • /
    • 2006
  • Through the analysis of conventional TVD limiters, a new multi-dimensional limiting function is derived for an oscillation control in multi-dimensional flows. Then, Multi-dimensional Limiting Process (MLP) is developed with the multi-dimensional limiting function. The major advantage of MLP is to prevent oscillations across a multi-dimensional discontinuity, and it is readily compatible with more than 3rd order spatial interpolation. Moreover, MLP shows a good convergence characteristic in a steady problem and it is very simple to be implemented. Through numerical test cases, it is verified that MLP substantially improves accuracy, efficiency and robustness both in continuous and discontinuous flows.

Study on High Accurate Schemes for Simulation of Free-surface Flow (자유표면 유동 시뮬레이션을 위한 고정확도 수치도식의 검토)

  • Park, Jong-Chun;Lee, Byoung-Hyuk;Kim, Jeung-Hu
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.31-36
    • /
    • 2006
  • Numerical schemes for spacing and time are tested to accurately simulate the wave propagation. The tested numerical schemesinclude 2nd-order central differencing, l-order upwind scheme, 2nd-order Leith scheme, 3rd-order MUSCLE, QUICK and QUICKEST schemes in spacing and the Euler and 4th-order Runge-Kutta(R-K) schemes in time. It is seen that more accurate results are expected when the higher-order schemes, especially the schemes combined with a TVD control limiter, are used for solving the wave equation. The 3rd-order upwind scheme with limiter and the 4th-order R-K scheme in tim£ are finally applied to the wave-making simulation in a digital wave tank.

Calculation of overtopping discharge with time-dependent aspects of an embankment failure (시간에 따른 제방붕괴 양상을 고려한 월류량 산정)

  • Kim, Hyung-Jun;Kim, Jong-Ho;Jang, Won-Jae;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.69-78
    • /
    • 2007
  • In this study, a time-dependent aspect of an embankment failure is considered to simulate a flood inundation map and calculate overtopping discharge induced by an embankment failure. A numerical model has been developed by solving the two dimensional nonlinear shallow water equations with a finite volume method on unstructured grids. To analyze a Riemann problem, the HLLC approximate Riemann solver and the Weighted Averaged Flux method are employed by using a TVD limiter and the source term treatment is also employed by using the operator splitting method. Firstly, the numerical model is applied to a dam break problem and a sloping seawall. Obtained numerical results show good agreements with experimental data. Secondly, the model is applied to a flow induced by an embankment failure by assuming that the width and elevation of embankment are varied with time-dependent functions. As a result of the comparison with each numerical overtopping discharge, established flood inundation discharges in the previous studies are overestimated than the result of the present numerical model.