Browse > Article
http://dx.doi.org/10.5139/JKSAS.2006.34.7.001

Development of Multi-dimensional Limiting Process for Multi-dimensional Compressible Flow  

윤성환 (서울대학교)
김종암 (서울대학교)
김규홍 (서울대학교)
Publication Information
Journal of the Korean Society for Aeronautical & Space Sciences / v.34, no.7, 2006 , pp. 1-11 More about this Journal
Abstract
Through the analysis of conventional TVD limiters, a new multi-dimensional limiting function is derived for an oscillation control in multi-dimensional flows. Then, Multi-dimensional Limiting Process (MLP) is developed with the multi-dimensional limiting function. The major advantage of MLP is to prevent oscillations across a multi-dimensional discontinuity, and it is readily compatible with more than 3rd order spatial interpolation. Moreover, MLP shows a good convergence characteristic in a steady problem and it is very simple to be implemented. Through numerical test cases, it is verified that MLP substantially improves accuracy, efficiency and robustness both in continuous and discontinuous flows.
Keywords
Multi-dimensional limiting process; Multi-dimensional limiting function; Multi-dimensional flows;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. R. Chakravarthy and S. Osher, 'A New Class of High Accuracy TVD Schemes for Hyperbolic Conservation Laws', AIAA Journal, Paper No. 85-0363, 1985
2 Akira Ogawa, Vortex flow, CRC Press, 1992
3 Z. J. Wang and B. E. Richards, 'High-resolution schemes for steady flow computation', J. Comput. Physics. Vol. 97, 1991, pp.53   DOI   ScienceOn
4 Dinshaw S. Balsara and Chi-Wang Shu, 'Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy', J. of Comput. Physics, Vol. 160, 2000, pp. 405-452   DOI   ScienceOn
5 P. K. Sweby, 'High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,' SIAM Journal on Numerical Analysis, Vol. 21(5), 1984, pp. 995-1011   DOI   ScienceOn
6 A. Suresh and H. T. Huynh, 'Accurate Monotonicity-Preserving Schemes with Runge?Kutta Time Stepping', J. of Comput, Physics, Vol. 136, 1997, pp. 83-99   DOI   ScienceOn
7 Eric Garnier, Pierre Sagaut and Michel Deville, 'A Class of Explicit ENO Filters with Application to Unsteady Flows', J. of Comput. Physics, Vol. 170, 2001, pp. 184-204   DOI   ScienceOn
8 B. van Leer, 'Towards the ultimate conservative difference scheme V. : A second order sequel to Codunov's method', J. of Comput. Physics. Vol. 32, 1979, pp. 101   DOI   ScienceOn
9 H. C. Yee, 'Construction of explicit and implicit symmetric TVD schemes and their applications', J. Comput. Physics. Vol. 68, 1987, pp. 151   DOI   ScienceOn
10 H. C. Vee, N. D. Sandham and M. J. Djomehri, 'Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters', J. of Comput Physics, Vol. 150, 1999, pp. 199-238   DOI   ScienceOn
11 C. Shu and S. Osher, 'Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes,' J. of Comput, Physicss. Vol. 77, 1988, pp. 439-471   DOI   ScienceOn
12 Guang-Shan Jiang and Chi-Wang Shu, 'Efficient Implementation of Weighted ENO Schemes', J. of Comput. Physics, Vol. 126, 1996, pp. 202-228   DOI   ScienceOn
13 B. van Leer, 'Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second-order scheme', J. of Comput. Physics. Vol. 14, 1974, pp. 361   DOI   ScienceOn
14 A. Harten, 'High resolution schemes for hyperbolic conservation laws', J. Comput. Physics. Vol. 49, 1983, pp. 357   DOI   ScienceOn
15 J. B. Goodman and R. J. Le Veque, 'On the accuracy of stable schemes for 2D scalar conservation laws', Mathematics of Computation, Vol. 45, 1985, pp. 15   DOI
16 C. W. Shu, 'TVB Uniformly High-order Schemes for Conservation Laws', Mathematics of Computation, Vol. 49(179), 1987, pp. 105-121   DOI
17 A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, 'Uniformly high order essentially non-oscillatory scheme III', J. Comput. Physics. Vol. 71, 1987, pp. 231   DOI   ScienceOn
18 Xu-Dong Liu, Stanley Osher and Tony Chan, 'Weighted Essentially Non-oscillatory Schemes', J. of Comput. Physics, Vol.15, 1994, pp. 200-212
19 P. L. Roe, 'Approximation Riemann Solver, Parameter Vectors and Difference Schemes', J. of Comput. Physics, Vol. 43, 1981, pp. 357-37   DOI   ScienceOn
20 K. H. Kim and C. Kim, 'Accurate, Efficient and Monotonic Numerical Methods for Multi-dimensional Compressible Flows, Part I : Spatial Discretization', J. of Comput. Physics, Vol. 208(2), 2005, pp. 527-569   DOI   ScienceOn
21 K. H. Kim, C. Kim and O. H. Rho, 'Methods for the Accurate Computations of Hypersonic Flows, Part I AUSMPW+ Scheme', J. of Comput. Physics, Vol. 174, 2001, pp. 38-80   DOI   ScienceOn
22 S. Yoon and A. Jameson, 'Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations', AIAA Journal, Vol. 26(9), 1988, pp. 1025   DOI   ScienceOn
23 V. Dam, C. Tenaud, 'Evaluation of TVD high resolution schemes for unsteady viscous shocked flows', Computers and Fluids, Vol. 30, 2001, pp. 89-113   DOI   ScienceOn