국내외 TV방송의 디지털 전환 프로젝트가 본격적으로 진행되고 있다. 디지털 방송 서비스는 다매체, 다채널을 통한 방송 프로그램의 증가와 양방향 TV방송 서비스로 인해 사용자에게 다양한 방송 프로그램의 선택과 개인/커뮤니티별 맞춤형 시청 기회를 제공함으로써 새로운 방송서비스 환경을 필요로 한다. 본 논문에서는 TV-Anytime 영상 메타데이터에 대한 데이터 스트림 마이닝 기법을 이용하여 사용자의 시청 상황을 포함한 시청 패턴을 분석함으로써 개인/커뮤니티 시청 패턴 프로파일 및 시청 선호도 연관규칙 생성 기법을 적용한 개인/커뮤니티 맞춤형 Digital TV 시스템 을 제안한다. 또한, 임베디드 시스템 기반의 사용자 인터페이스를 구현하여 개인/커뮤니티 사용자들에게 적절한 추천 프로그램을 제공하고, 시청 프로그램 정보에 따른 시청 상황을 자동으로 제어하는 기능을 포함한다. 또한, 스마트폰 기반의 채널 추천 시스템을 구현하여 프로파일의 활용도를 증가시켰으며, 실험을 통하여 본 논문에서 제안하는 방법의 효율성을 검증한다.
2001년 하반기 이후 디지털 TV 시대가 열리면서 채널의 수와 그에 따른 프로그램의 수가 폭발적으로 증가했다. 그리하여 기존의 방법으로는 시청자가 원하는 프로그램을 선택하는 것이 어려운 일이 되었다. 이 문제를 해결하는 방안으로서 pEPG(personalized Electronic Program Guide)가 많이 연구되어 왔으며 본 논문에서는 pEPG를 위한 추천 방법에 대해 연구하고자 한다. 기존의 추천 방법은 내용기반추천과 협업추천이 대표적인데, 이들은 어느 한족이 우월하다기 보다 각각의 단점을 상호보완해주는 관계에 있다. 각 추천 방법이 TV환경의 pEPG에 적용될 때는 어떤 장단점이 있는지 살펴보고, 이에 인구통계학적추천을 혼합한 기법을 제안한다.
1990년대 중반에 협업 필터링의 출현으로 인하여 추천시스템에 관련된 연구가 늘어나게 되었다. 협업 필터링의 출현 이후 내용 기반 필터링, 협업 필터링과 내용 기반 필터링이 혼합된 하이브리드 필터링 등 새로운 기법들이 출현함으로써 2000년대에는 추천시스템의 연구가 눈에 띄게 증가하였다. 하지만 현재까지 추천시스템에 관련된 문헌들에 대한 리뷰와 분류가 체계적으로 되어있지 않다. 이와 같은 문제에 대한 해결방안으로써, 본 연구에서는 2001년부터 2010년도까지의 추천시스템에 관련된 문헌들 중 MIS Journal Ranking의 125개의 저널에서 추천시스템(Recommender system, Recommendation system), 협업 필터링(Collaborative Filtering), 내용 기반 필터링(Content based Filtering), 개인화 시스템(Personalized system) 등의 5가지 키워드로 제한하여 조사하였다. 총 37개의 저널에서 논문을 검색하였으며, 검색되어진 논문을 분석한 결과 추천시스템과 관련이 없는 논문을 제외한 총 187개의 논문을 선정하여 분석하였다. 이 연구에서는 그러나 컨퍼런스 논문, 석사, 박사학위 논문, 영어로 작성되지 않은 논문, 완성되지 않은 논문 등은 제외하였다. 본 연구에서는 187개의 논문을 분석하여 2001년부터 2010년까지의 각각의 년도 별 추천시스템의 연구에 대한 동향 분석, Journal별 추천시스템의 게재 분류, 추천시스템 어플리케이션의 사용 분야(책, 문서, 이미지, 영화, 음악, 쇼핑, TV 프로그램, 기타)별 분류 및 분석, 추천시스템에 사용된 데이터마이닝 기술(연관 규칙, 군집화, 의사 결정나무, 최근접 이웃 기법, 링크 분석 기법, 신경망, 회귀분석, 휴리스틱 기법)별 분류 및 분석을 수행하였다. 따라서 본 연구에서 제안한 각각의 분류 및 분석 결과들을 통하여 현재까지 추천시스템의 연구에 대한 연구 동향을 파악 할 수 있었으며, 분석결과를 통해 추천시스템에 관심이 있는 연구자와 전문가에게 미래의 추천시스템의 연구에 대한 가이드라인을 제시 할 수 있을 것이라고 기대한다.
Television food advertisement is the most effective way to reach to consumers with food and nutritional informations and affect their eating behavior. Therefore, 218 food commercials were reviewed using video tapes and copies to know the present food product trends, food messages they transmit and define misleading food commercials. Messages were focused on the benefit of health promoting substances they contain, especially for functional food components, fortified nutrients, food safety focused on food additives, convenience and differentiation with other products. Overnutrition on specific nutrients could be expected due to nutrient fortified products and misleading of food commercials were also noted. Regarding trends, guidelines provided by television broadcasting company shoud be fortified in the connection of Food Hygine Law and supervision committe should reinforce the food company to summit data for the approval of their advertisement claims. Nutrition educational spot program shoud be produced and broadcasted for the public to protect the consumer from food faddism in near future.
최근 IPTV 상용화와 디지털 방송 본격화는 사용자에게 다양한 방송 프로그램을 제공한다는 장점도 있지만, 동시에 수많은 프로그램을 탐색하여 선별해야 하는 부담을 주고 있다. 이러한 불편함을 해소하고자 최근에는 사용자 선호도와 방송 프로그램 정보를 이용하여 사용자 취향에 맞는 프로그램을 자동으로 추천하는 서비스의 요구가 증대되고 있다. 또한 궁극적으로 방송 서비스가 '개인화'와 '개방화'의 형태로 진행되고 있다는 점을 감안하면, 추천 서비스는 TV 프로그램 뿐만 아니라 광고도 포함해야 하며, 다중 언어를 지원하는 형태로 발전되어야 한다. 본 논문에서는 다중 언어를 지원하는 개인화된 TV 프로그램 및 광고 추천 서비스를 위한 하나의 시스템을 제안한다. 우리는 먼저 사용자 시나리오를 작성하고, 기능 요구사항들을 분석하여 시스템 구조를 설계한다. 그리고 다중 언어를 지원하는 시스템에서의 한글 처리 방법도 간단히 설명한다. 본 연구는 현재 유럽 공동기술 개발 사업 과제의 일환으로 진행되고 있어, 여기에서는 현 시점의 결과물인 시나리오, 시스템 구조 설계, 한글 처리까지 소개하고 있다.
최근 스마트폰의 감정인식 기술과 멀티미디어 기술의 발전은 전통적인 방송방식의 새로운 변화를 요구하고 있다. 기존 지상파방송사업자 중심의 단방향 방송은 인터넷, 모바일 그리고 스마트 TV의 결합으로 시청자 중심의 감성방송을 제공하는 양방향 방송매체로의 변환이 불가피하다. 그러므로 본 논문에서는 사용자의 감정(슬픔, 분노, 우울)을 측정할 수 있는 스마트폰 애플리케이션을 개발하고 스마트 TV와 융합함으로써 함께 시청하는 사용자 그룹간의 감성적인 상호 유대감을 높이는 서비스를 제공한다. 만약 사용자 그룹 중에 우울증에 빠진 친구가 있다면, 감정인식 기반의 스마트폰과 TV와의 융합을 통해 시청중인 방송에 초대하여 친구 아바타(이모티콘)의 표정을 보면서 진솔한 대화를 나눔으로써 인간적인 위로를 줄 수 있다. 제안하는 스마트폰 연동의 감성방송 서비스를 통해 외로움과 우울증으로 고통 받는 친구에게 인간적인 유대감과 행복감을 제공함으로써 개인의 극단적인 결정으로부터 구출할 수 있다. 추가적으로, 제안하는 양방향 방송서비스는 시청자의 감성에 따른 프로그램 추천서비스, 감성조명 서비스를 통한 실재감 극대화 및 시청자의 기분을 활용한 홈쇼핑 서비스로 확장이 가능하다.
최근 디지털 데이터 방송이 본격화됨에 따라, 인터랙티브한 서비스 제공을 위한 콘텐츠 및 채널의 수가 기하급수적으로 증가하고 있다. 이러한 다채널 시대에 시청자의 선호도를 반영한 EPG(Electronic Program Guide : 전자 프로그램 가이드)는 TV의 포탈서비스이자 필수 요구 사항이며, 또한 국내 디지털 방송의 표준이 유럽의 DVB-MHP 표준안을 따르고 있는 만큼 EPG서비스도 그에 발맞추어 연구 및 개발이 요구되어진다. 이에 본 논문에서는 상기 제시된 요구 사항을 충족하기 위해 시청자와 시청자들 간의 시청정보 및 프로파일을 이용한 1 2차에 걸친 협업 필터링기법을 제안한다. 이를 위해 시청자와 선호도가 비슷한 선호도집단 내에서 서로 콘텐츠를 추천하는 협업 EPG시스템을 Java Xlet 응용프로그램으로 설계 및 구현하였으며, DVB-MHP 표준을 준수한 EPG 임을 확인하기 위해 DVB-MHP 표준안을 지원하는 OpenMHP 10.4를 통해 결과를 검증하였다.
디지털 방송의 시작과 함께, 지상파, 위성, 케이블과 같은 다양한 매체를 통한 다채널 방송 시청 환경의 도래는 사용자에게 많은 방송 프로그램 시청 정보를 전달하게 되었다. 이와 더불어, 방송 단말에 전송된 다양한 방송 프로그램 정보를 탐색하고 선호 방송 프로그램을 선별하기 위해서는 사용자에게 많은 노력이 요구된다. 따라서, 사용자로 하여금 자신의 취향 및 자신이 원하는 방송 프로그램 정보에 자동적으로 근접할 수 있도록 하는 개인화된 방송 서비스가 요구되고 있다. 이러한 요구에 따라, 본 논문에서는 다채널 방송 시청 환경 하에서 사용자의 방송 프로그램 시청 히스토리를 분석하고, 특정 시간에 따른 사용자의 방송 프로그램 시청 패턴윽 추출하여 방송 프로그램 장르에 대한 사용자 선호도를 자동으로 계산하는 알고리즘을 제안하고. MPEG-7 MDS 구조에 따른 사응자 선호토 서술과 이를 이용하여 사용자의 선호도에 따라 방송 프로그램을 자동적으로 추천하는 TV 프로그램 추천 어플리케이션을 소개한다. 본 논룬의 실헐을 위해 AC Nielsen Korea에서 제공된 실제 연령대별, 성별, 시간대별로 사용자의 TV 시청 자료를 사용하였으며, 실험결과를 통해 본 논문에 제안된 베이시안 네트워크 기반 사용자 자동 학습 알고리즘이 효과적으로 사용자 선호도를 학습한 수 있음을 확인하였다.
본 논문은 방송 콘텐츠를 소비한 사용자의 소비이력 정보를 바탕으로 추천해 주는 시스템을 소개한다. 방송 콘텐츠는 도서, 음반, 영화 등의 콘텐츠와는 다른 구조로 구성되어 있으며, 크게 시리즈물과 에피소드물로 나뉜다. 시리즈물은 여러 개의 방송 콘텐츠가 하나의 프로그램을 구성하고 하나의 주제나 스토리를 다룬다. 반면에 에피소드물은 여러 개의 방송 콘텐츠가 하나의 프로그램을 구성하지만 각각의 콘텐츠 별로 다른 주제나 스토리를 다룬다. 시리즈물인 경우에는 프로그램 단위로 추천이 가능하고, 에피소드물인 경우에는 하나의 프로그램을 구성하는 콘텐츠들이 독립된 콘텐츠로서 추천이 가능하다. 이와 같은 방송콘텐츠의 특징에 따라, 본 논문에서는 시리즈물과 에피소드물로 추천단위를 달리하여 콘텐츠를 추천한다. 콘텐츠 추천은 사용자의 방송 콘텐츠 소비이력 정보를 활용하여 방송 콘텐츠간의 유사도를 도출하고 이를 토대로 추천을 제공한다. 방송 콘텐츠간의 유사도는 협업 필터링 알고리즘을 사용하여 계산한다. 추천 시스템은 희소 배열 자료구조를 사용하며, 메모리 기반의 연산을 수행하여 추천 콘텐츠를 색인 구조로 저장한다. 저장된 색인은 추천 시스템에서 제공하는 오픈 API를 통해 서비스되며, 오픈 API는 HTTP 프로토콜을 기반으로 구현되었다. 마지막으로 추천 시스템 구현과 실험을 위한 웹 데모를 소개한다.
본 논문은 양방향 개인 맞춤형 방송 시스템 구축에 관한 연구이다. 맞춤형 방송이란 사용자가 원하는 방송 프로그램만을 사용자가 원하는 시간에 볼 수 있게 하는 서비스를 말한다. 양방향 방송 서비스는 사용자의 방송단말과 방송 서버 사이의 양방향 데이터 전송을 허용하여 만족도 높고 개인화된 방송 서비스를 제공하는 것을 목표로 한다. 본 연구는 양방향 맞춤형 방송 서비스를 위한 사용자 프로파일 시스템을 개발하였다. 이 시스템은 맞춤형 방송 서비스를 위한 표준인 TV-Anytime에서 제안하고 있는 메타데이터를 기반으로 사용자 프로파일과 콘텐츠 데이터 및 맞춤형 광고 서비스를 포함한 맞춤형 방송의 다양한 기능을 포함하여 양방향 데이터 전송까지 지원하고 있다. 구축된 양방향 맞춤형 방송 시스템은 사용자 프로파일을 통하여 개인 별로 선호하는 방송 콘텐츠 및 광고를 추천 및 지원하여 사용자의 시청 만족도를 높였으며, 기존의 방송과 차별화된 지능적인 방송 서비스의 지원으로 사용자의 만족도를 증가시켰다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.