• Title/Summary/Keyword: TTX

Search Result 204, Processing Time 0.033 seconds

A Study on Characteristics of TTX(Tilting Train Express) Traction System (틸팅차량 주전력변환장치 특성 연구)

  • Han, Young-Jae;Lee, Su-Gil;Lee, Hyoung-Woo;Han, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1059-1060
    • /
    • 2008
  • 추진장치는 차량의 안전에 큰 영향을 주는 핵심 장치로 철도 선진국들은 이 장치의 크기 및 무게 저감, 스위칭 소음과 노이즈 저감 등에 대한 연구를 활발히 수행하고 있다. 본 논문에서는 한국형 틸팅열차용 주전력변환장치 역행시험결과를 통해 제작된 추진장치의 성능이 양호함을 확인하였다.

  • PDF

200km/h급의 한국형 고속틸팅열차(TTX) 개발사업 소개

  • 신광복;구동회;한성호
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.62-65
    • /
    • 2004
  • 기존선 속도향상, 안전성 확보, 수송서비스 개선을 목표로 하는 철도기술연구개발사업은 고객에게 고품질의 서비스를 제공하고 타 교통시스템과의 경쟁력을 확보하기 위하여 주관행정부처인 철도청과 전문기관인 한국철도기술연구원에서 추진하고 있다. 이 사업은 1999년 12월 철도기술연구개발사업 기본계획을 수립하여 2001년 8월 한국철도기술연구원을 사업자로 선정하고 총 400억의 정부지원예산을 투입하여 2006년 7월까지 5차 년도에 걸쳐 기존선 속도향상을 위한 실용화 기술개발을 목표로 하고 있다. (중략)

Technical specification of Electric Multiple Unit with Tilting Express (전기식 틸팅차량(TTX)의 구성 및 기술사양)

  • Han Seong-ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.30-33
    • /
    • 2004
  • This paper suggested that the technical specification of tilting train EMU for speed up on existing lines. High speed strategy of existing lines are the modification of railway system which are made on cant, lengths of transition curves, the catenary system and train system. Tilting technology is more useful a strategy for speed increases on existing lines with low investment needed. We performed a feasibility study which is considered out real track conditions and designed propulsion and braking system of tilting EMU system.

  • PDF

A Study on the Effect Analysis of the Tilting Technology According to the Evaluation of Electric Power Consumption Energy of Rolling Stock (철도차량 소비전력량 평가에 따른 틸팅기술 효과분석)

  • Kim, Dae-Sik;Lee, Ki-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.329-333
    • /
    • 2012
  • In this paper, By the time that the tilting technology is adopted in railway rolling stock, we analyzed quantitatively energy saving by reducing the power consumption with the reduction of the operation time through the speed improvement and suggested the necessity to introduce tilting technology in the domestic rail vehicles. To achieve this purpose, the effect of energy saving by comparing and analyzing the power consumption during the operation by TTX HANVIT 200 and 8200 electric locomotives to pull the trains on the same line was suggested and the efficiency of the main devices was compared and analyzed by measuring the power consumption by a single unit. As the energy saving is the world topic, the studies on reducing energy usage goes on constantly in many areas. In addition, as of the time to improve the conventional tracks to speed up and change the signals, Tilting technology will be contributed to the management environment by enlarging the passengers' demand through the reduction of the operation time and saving energy using the existing infrastructure.

Isolation and electrical characterization of the rat spinal dorsal horn neurons

  • Han, Seong-Kyu;Lee, Mun-Han;Ryu, Pan-Dong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.175-175
    • /
    • 1996
  • The spinal dorsal horn is the area where primary afferent fibers terminate and cutaneous sensory information is Processed. A number of putative neurotransmitter substances, including excitatory and inhibitory amino acids and peptides, are present in this region and sites and cellular mechanisms of their actions have been a target of numerous studies. In this study, single neurons were acutely isolated and the properties of whole cell current and responses to excitatory and inhibitory neurotransmitters were studied by the patch clamp method. Young rats (7-14 days) were anesthetized with diethyl-ether, and the lumbar spinal cord was excised and cut transversely at a thickness of 30$\mu\textrm{m}$ by Vibroslicer. The treatment of spinal slices with low concentration of proteases (pronase and thermolysin 0.75 mg/$m\ell$) and mechanical dissociation yielded isolated neurons with near intact morphology. Multipolar, ellipsoidal and bipolar, and pyramidal cells were shown. By applying step voltage pulses to neurons held at -70 mV, two types of inward currents and one outward currents observed. The fast activating and inactivating inward current was the Na$\^$+/ current because of its fast kinetics and blocking by 0.5${\mu}$M TTX, a specific blocker of Na$\^$+/ channel. The second type of inward currents were sustained. Based on their kinetics and current-voltage relations, it was likely that the second type of inward current was the voltage-dependent Ca$\^$2+/ current. In the presence of TTX, the steady-state currents mainly represented outward K$\^$+/ current which looked like the delayed rectifier K$\^$+/ current. In addition, the membrane currents produced by agonist of excitatory amino acid (EAA) receptor and the endogenous transmitter candidate L-glutamate were recorded in isolated whole-cell voltage clamped neurons as well as responses to inhibitory amino acids (${\gamma}$-amino butyric acid, glycine). Drugs were applied by a method that allows complete exchange of the solution within 1 sec; an infinite number of solutions can be applied to a single cell.

  • PDF

Mechanism of Action of Pancreatic Polypeptide (PP) on Pancreatic Exocrine Secretion in Isolated Rat Pancreas

  • Lee, Yun-Lyul;Kwon, Hyeok-Yil;Park, Hyung-Seo;Park, Hyoung-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 1997
  • Aim of this study was to investigate if pancreatic polypeptide (PP) reduced the insulin action via the intra-pancreatic cholinergic nerves in the isolated rat pancreas. The pancreas was isolated from rats and perfused with intra-arterial infusion of modified Krebs-Henseleit solution containing 2.5 mM glucose at a flow rate of 1.2 ml/min. Simultaneous intra-arterial infusion of insulin (100 nM) resulted inpotentiation of the pancreatic flow rate and amylase output which were stimulated by cholecystokinin (CCK, 14 pM). These potentiating actions of insulin on the CCK -stimulated pancreatic exocrine secretion were completely abolished by administration of rat PP. Vesamicol, a potent inhibitor of vesicular acetylcholine storage, and tetrodotoxin (TTX) also significantly reduced the combined actions of insulin and CCK. Administration of carbamylcholine, an acetylcholine agonist, completely restored the vesamicol- or TTX-induced inhibition of the potentiation between insulin and CCK. Also rat PP failed to attenuate the restoring effect of carbamylcholine. Electrical field stimulation (15-30 V, 2 msec and 8 Hz) resulted in a significant increase in the pancreatic flow rate and amylase output in voltage-dependent manner. Effects of electrical field stimulation were augmented by endogenous insulin. Rat PP also suppressed the pancreatic exocrine secretion stimulated by electrical field stimulation. These observations strongly suggest that PP inhibits the potentiating actions of insulin on CCK -stimulated pancreatic exocrine secretion by suppression of the intra-pancreatic cholinergic activity in the isolated rat pancreas.

  • PDF

Characterization of Ionic Currents in Human Neural Stem Cells

  • Lim, Chae-Gil;Kim, Sung-Soo;SuhKim, Hae-Young;Lee, Young-Don;Ahn, Seung-Cheol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • The profile of membrane currents was investigated in differentiated neuronal cells derived from human neural stem cells (hNSCs) that were obtained from aborted fetal cortex. Whole-cell voltage clamp recording revealed at least 4 different currents: a tetrodotoxin (TTX)-sensitive $Na^+$ current, a hyperpolarization-activated inward current, and A-type and delayed rectifier-type $K^+$ outward currents. Both types of $K^+$ outward currents were blocked by either 5 mM tetraethylammonium (TEA) or 5 mM 4-aminopyridine (4-AP). The hyperpolarization-activated current resembled the classical $K^+$ inward current in that it exhibited a voltage-dependent block in the presence of external $Ba^{2+}$ (30 ${\mu}$M) or $Cs^+$ (3${\mu}$M). However, the reversal potentials did not match well with the predicted $K^+$ equilibrium potentials, suggesting that it was not a classical $K^+$ inward rectifier current. The other $Na^+$ inward current resembled the classical $Na^+$ current observed in pharmacological studies. The expression of these channels may contribute to generation and repolarization of action potential and might be regarded as functional markers for hNSCs-derived neurons.

The review of safety against derailment on twisted track for Korean tilting train design (한국형 틸팅차량 설계의 비틀린 궤도상의 탈선안전도 검토)

  • Kim Nam-Po;Kim Jung-Seok;Park Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.299-307
    • /
    • 2005
  • The 180 km/h Korean Tilting Train(TTX) which is now developing as a part of the Korean National R&D project, was elaborately designed. As the tilting trains run curve track with the $30\%$ higher speed than normal trains, the higher centrifugal and dynamic force are expected. Furthermore the complex tilting system increase the probability of failure. Therefore it is very important for tilting train to ensure safety against derailment under the various kind of failed condition in the middle of running as well as normal operating condition. The TTX train have the relatively high roll stiffness to improve the lateral ride comfort and to limit the roll displacement on the curve. But the higher roll stiffness increase the risk of derailment on the twisted track. This paper describes the study to review the safety against derailment caused by the wheel unloading on the severely twisted track. The worst combination of maximum cant change with maximum twist defect was established by numerical simulation. And also it was assumed that the air bag deflated and still the train run its speed limit. Those kind of assumption might be the worst case from the view point of wheel unloading derailment on the twisted track. The dynamic simulation was done by means of VAMPIRE S/W and non-linear transient analysis. We found that derailment quotients Q/P was only slightly influenced by track twist but the wheel unloading was greatly influenced. And we ascertained that the higher roll stiffness the higher wheel unloading. In case of air bag deflated situation, the wheel unloading reached up to $100\%$ which means the wheel lift or jumped. Therefore it was concluded that the design need to be improved to ensure the safety against derailment on the maximum twisted track in case of air bag deflated and tilting train's speed limit.

  • PDF

Nitric oxide(NO)-mediated relaxation of bovine retractor penis muscle (소 음경후인근의 Nitric oxide(NO) 매개성 이완)

  • Yang, Il-suk;Chang, Hee-jung;Kang, Tong-mook;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.599-605
    • /
    • 1996
  • This study was designed to examine the mechanism of penile erection in adult bull by analyzing the responses of bovine proximal retractor penile muscle strips(BRP) to electtical field stimulation(EFS), exogenous nitric oxide(NO), NO synthesis precursor(L-arginine), NO synthase inhibitors(L-NAME, L-NMMA), guanylate cyclase inhibitor(methylene blue) and nonspecific potassium channel blocker(tetraethylammonium, TEA) treatments. Isometric tension of BRP was measured using physiograph. Results were summarized as follows: 1. EFS of nonadrenergic noncholinrgic(NANC) nerve in BRP produced frequency-dependent inhibitory responses to the contraction induced by co-treatment of epinephrine, guanethidine and atropine. The inhibitory responses to EFS were blocked by tetrodotoxin(TTX, $1{\mu}M$). 2. Treatment of L-NAME ($10,\;20{\mu}M$) inhibited the relaxation to EFS whereas L-NMMA ($100{\mu}M$) had no effect. 3. Treatment of NO($20,\;40{\mu}M$; as an acidified solution of $NaNO_2$) induced concentration-dependent relaxation whereas preincubation of TTX($1{\mu}M$) and L-NAME($20{\mu}M$) had no effect on the relaxation response. 4. L-arginine treatment(10mM) blocked the inhibitory effect of L-NAME($20{\mu}M$). 5. Pretreatment of methylene blue($40{\mu}M$) reduced the NANC-induced relaxation of BRP. 6. Tetraethylammonium(TEA, 80mM) reduced NANC relaxation. These results suggest that NO may act as a NANC neurotransmitter in BRP and the effects might be mediated by cGMP and potassium channel.

  • PDF

The Kinetics of Hyperpolarization Activated Current$(i_f)$ in Sinoatrial Node of the Rabbit (토끼 동방결결에서 Pacemaker전류(과분극에 의해 활성화되는 내향전류, $i_f$)의 동력학적 특성에 관한 연구)

  • Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 1983
  • 1) The two microelectrode method was used to voltage clamp small preparations of rabbit sinoatrial node. The kinetics of hyperpolarization activated inward current, $i_f$ were analysed. 2) The hrperpolarization pulses activated $i_f$ current in the presence of $10^{-7}g/ml$ TTX and 2 mM $Mn^{2+}$. The activation range was in between -45 mV to -75 mV. The current magnitude was increased and time course was faster by strong hyperpolarization pulses. 3) Standard envelope tests indicated that this current is exponentially controlled by single gate. 4) Semilogarithmic plot of $i_f$ activation versus time was found to be linear in the activation range. The decrease in current magnitude and the shifts in activation curve and rate constants curve to the hyperpolarizing direction were obtained with $Ba^{2+}$, indicating that $Ba^{2+}$ shifts the voltage dependence of the gating kinetics, were partially reversed by 24 mM $K^+$.

  • PDF