• Title/Summary/Keyword: TSPC(True Single Phase Clocked) D-flip flops

Search Result 2, Processing Time 0.016 seconds

A Design of Prescaler with High-Speed and Low-Power D-Flip Flops (고속 저전력 D-플립플롭을 이용한 프리스케일러 설계)

  • Park Kyung-Soon;Seo Hae-Jun;Yoon Sang-Il;Cho Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.43-52
    • /
    • 2005
  • An prescaler which uses PLL(Phase Locked Loop) must satisfy high speed operation and low power consumption. Thus the performance or TSPC(True Single Phase Clocked) D-flip flops which is applied at Prescaler is very important. Power consumption of conventional TSPC D-flip flops was increased with glitches from output and unnecessary discharge at internal node in precharge phase. We proposed a new D-flip flop which reduced two clock transistors for precharge and discharge Phase. With inserting a new PMOS transistor to the input stage, we could prevent from unnecessary discharge in precharge phase. Moreover, to remove the glitch problems at output, we inserted an PMOS transistor in output stage. The proposed flip flop showed stable operations as well as low power consumption. The maximum frequency of prescaler by applying the proposed D-flip flop was 2.92GHz and achieved power consumption of 10.61mw at 3.3V. In comparison with prescaler applying the conventional TSPC D-flip $flop^[6]$, we obtained the performance improvement of $45.4\%$ in the view of PDP(Power-Belay-Product).

Design of CMOS Dual-Modulus Prescaler and Differential Voltage-Controlled Oscillator for PLL Frequency Synthesizer (PLL 주파수 합성기를 위한 dual-modulus 프리스케일러와 차동 전압제어발진기 설계)

  • Kang Hyung-Won;Kim Do-Kyun;Choi Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.179-182
    • /
    • 2006
  • This paper introduce a different-type voltage-controlled oscillator (VCO) for PLL frequency synthesizer, And also the architecture of a high speed low-power-consumption CMOS dual-modulus frequency divider is presented. It provides a new approach to high speed operation and low power consumption. The proposed circuits simulate in 0.35 um CMOS standard technology.

  • PDF