• Title/Summary/Keyword: TSK model

Search Result 69, Processing Time 0.023 seconds

Adaptive PID Controller for Nonlinear Systems using Fuzzy Model

  • Zonghua Jin;Lee, Wonchang;Geuntaek Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.342-345
    • /
    • 2003
  • This paper presents an adaptive PID control scheme for nonlinear system. TSK(Takagi-Sugeno-Kang) fuzzy model is used to estimate the error of control input, and the parameter of PID controller are adapted using the error. The parameters of TSK fuzzy model are also adapted to plant. The proposed algorithm allows designing adaptive PID controller which is adapted to the uncertainty of nonlinear plant and the change of parameters. The usefulness of the proposed algorithm is also certificated by the several simulations.

  • PDF

A Multiple Model Approach to Fuzzy Modeling and Control of Nonlinear Systems

  • Lee, Chul-Heui;Seo, Seon-Hak;Ha, Young-Ki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.453-458
    • /
    • 1998
  • In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. So as to handle a variety of nonlinearity and reflect the degree of confidence in the informations about system, we combine multiple model method with hierarchical prioritized structure. The mountain clustering technique is used in partition of system, and TSK rule structure is adopted to form the fuzzy rules. Back propagation algorithm is used for learning parameters in the rules. Computer simulations are performed to verify the effectiveness of the proposed method. It is useful for the treatment fo the nonlinear system of which the quantitative math-approach is difficult.

  • PDF

A Study on the Automation of Deburring Process Using Vision Sensor (비젼 센서를 이용한 디버링 공정의 자동화에 관한 연구)

  • 신상운;갈축석;강근택;안두성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.553-558
    • /
    • 1994
  • In this paper, we present a new approach for the automation of deburring process. An algorithm for teaching skills of a human expert to a robot manipulator is developed. This approach makes use of TSK fuzzy model that can express a highly nonlinear functional relation with small number of rules. Burr features such as height, width, area, cutting area are extracted from image processing by use of the vision system. Cutting depth, repeative number and normal cutting force are chosen as control signals representing actions of the human expert. It is verified that our processed fuzzy model can accurately express the skills of human experts for the deburring process.

  • PDF

Effective Gas Identification Model based on Fuzzy Logic and Hybrid Genetic Algorithms

  • Bang, Yonug-Keun;Byun, Hyung-Gi;Lee, Chul-Heui
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.329-338
    • /
    • 2012
  • This paper presents an effective design method for a gas identification system. The design method adopted the sequential combination between the hybrid genetic algorithms and the TSK fuzzy logic system. First, the sensor grouping method by hybrid genetic algorithms led the effective dimensional reduction as well as effective pattern analysis from a large volume of pattern dimensions. Second, the fuzzy identification sub-models allowed handling the uncertainty of the sensor data extensively. By these advantages, the proposed identification model demonstrated high accuracy rates for identifying the five different types of gases; it was confirmed throughout the experimental trials.

A Multi-Stage 75 K Fuzzy Modeling Method by Genetic Programming

  • Li Bo;Cho Kyu-Kab
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.877-884
    • /
    • 2002
  • This paper deals with a multi-stage TSK fuzzy modeling method by using Genetic Programming (GP). Based on the time sequence of sampling data the best structural change points of complex systems are detemined by using GP, and also the moving window is simultaneously introduced to overcome the excessive amount of calculation during the generating procedure of GP tree. Therefore, a multi-stage TSK fuzzy model that attempts to represent a complex problem by decomposing it into multi-stage sub-problems is addressed and its learning algorithm is proposed based on the Radial Basis Function (RBF) network. This approach allows us to determine the model structure and parameters by stages so that the problems ran be simplified.

  • PDF

Automation of deburring process using vision sensor and TSK fuzzy model (비젼 센서와 TSK형 퍼지를 이용한 디버링 공정의 자동화)

  • Shin, Shang-Woon;Gal, Choog-Seug;Kang, Geun-Taek;Ahn, Doo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 1996
  • In this paper, we present a new approach for the automation of deburring process. An algorithm for teaching skills of a human expert to a robot manipulator is developed. This approach makes use of TSK fuzzy mode that can wxpress a highly nonlinear functional relation with small number of rules. Burr features such as height, width, area, grinding area are extracted from image processing by use of the vision system. Grinding depth, repetitive number and normal grinding force are chosen as control signals representing actions of the human expert. It is verified that our proposed fuzzy model can accurately express the skills of human experts for the deburring process.

  • PDF

Modeling of Self-Constructed Clustering and Performance Evaluation (자기-구성 클러스터링의 모델링 및 성능평가)

  • Ryu Jeong woong;Kim Sung Suk;Song Chang kyu;Kim Sung Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.490-496
    • /
    • 2005
  • In this paper, we propose a self-constructed clustering algorithm based on inference information of the fuzzy model. This method makes it possible to automatically detect and optimize the number of cluster and parameters by using input-output data. The propose method improves the performance of clustering by extended supervised learning technique. This technique uses the output information as well as input characteristics. For effect the similarity measure in clustering, we use the TSK fuzzy model to sent the information of output. In the conceptually, we design a learning method that use to feedback the information of output to the clustering since proposed algorithm perform to separate each classes in input data space. We show effectiveness of proposed method using simulation than previous ones

Electric Power Load Forecasting using Fuzzy Prediction System (퍼지 예측 시스템을 이용한 전력 부하 예측)

  • Bang, Young-Keun;Shim, Jae-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1590-1597
    • /
    • 2013
  • Electric power is an important part in economic development. Moreover, an accurate load forecast can make a financing planning, power supply strategy and market research planned effectively. This paper used the fuzzy logic system to predict the regional electric power load. To design the fuzzy prediction system, the correlation-based clustering algorithm and TSK fuzzy model were used. Also, to improve the prediction system's capability, the moving average technique and relative increasing rate were used in the preprocessing procedure. Finally, using four regional electric power load in Taiwan, this paper verified the performance of the proposed system and demonstrated its effectiveness and usefulness.

Nonlinear System Modeling Using Bacterial Foraging and FCM-based Fuzzy System (Bacterial Foraging Algorithm과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링)

  • Jo Jae-Hun;Jeon Myeong-Geun;Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.121-124
    • /
    • 2006
  • 본 논문에서는 Bacterial Foraging Algorithm과 FCM(fuzzy c-means)클러스터링을 이용하여 TSK(Takagi-Sugeno-Kang)형태의 퍼지 규칙 생성과 퍼지 시스템(FCM-ANFIS)을 효과적으로 구축하는 방법을 제안한다. 구조동정에서는 먼저 PCA(Principal Component Analysis)을 이용하여 입력 데이터 성분간의 상관관계를 제거한 후에 FCM을 이용하여 클러스터를 생성하고 성능지표에 근거해서 타당한 클러스터의 수, 즉 퍼지 규칙의 수를 얻는다. 파라미터 동정에서는 Bacterial Foraging Algorithm을 이용하여 전제부 파라미터를 최적화 시킨다. 결론부 파라미터는 RLSE(Recursive Least Square Estimate)에 의해 추정되어진다. PCA(Principal Component Analysis)와 FCM을 적용함으로써 타당한 규칙 수를 생성하였고 Bacterial Foraging Algorithm을 이용하여 최적의 전제부 파라미터를 구하였다. 제안된 방법의 성능을 평가하기 위하여 Box-Jenkins의 가스로 데이터와 Rice taste 데이터의 모델링에 적용하였고 우수한 성능을 보임을 알 수 있었다.

  • PDF

Electric Load Forecasting using Data Preprocessing and Fuzzy Logic System (데이터 전처리와 퍼지 논리 시스템을 이용한 전력 부하 예측)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1751-1758
    • /
    • 2017
  • This paper presents a fuzzy logic system with data preprocessing to make the accurate electric power load prediction system. The fuzzy logic system acceptably treats the hidden characteristic of the nonlinear data. The data preprocessing processes the original data to provide more information of its characteristics. Thus the combination of two methods can predict the given data more accurately. The former uses TSK fuzzy logic system to apply the linguistic rule base and the linear regression model while the latter uses the linear interpolation method. Finally, four regional electric power load data in taiwan are used to evaluate the performance of the proposed prediction system.