• 제목/요약/키워드: TSK fuzzy

검색결과 97건 처리시간 0.024초

A TSK Fuzzy Controller for Underwater Robots

  • Kim, Su-Jin;Oh, Kab-Suk;Lee, Won-Chang;Kang, Geun-Taek
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.320-325
    • /
    • 1998
  • Underwater robotic vehicles (URVs) have been an important tool for various underwater tasks because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system becomes one of the most critical subsytems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. In this paper a new type of fuzzy model-based controller based on Takagi-Sugeno-Kang fuzzy model is designed and applied to the control of of an underwater robotic vehicle. The proposed fuzzy controller : 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule ; 2) can guarantee the stability of the closed-loop fuzzy system ; 3) is relatively easy to implement. Its good performance as well as its robustness to the change of parameters have been shown and compared with the re ults of conventional linear controller by simulation.

  • PDF

무인 잠수정의 퍼지제어 (Fuzzy Control of Underwater Robotic Vehicles)

  • 이원창;강근택
    • 동력기계공학회지
    • /
    • 제2권2호
    • /
    • pp.47-54
    • /
    • 1998
  • Underwater robotic vehicles(URVs) have been an important tool for various underwater tasks such as pipe-lining, data collection, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system is one of the most critical subsystems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. It is desirable to have an intelligent vehicle control system because the fixed-parameter linear controller such as PID may not be able to handle these changes promptly and result in poor performance. In this paper we described and analyzed a new type of fuzzy model-based controller which is designed for underwater robotic vehicles and based on Takagi-Sugeno-Kang(TSK) fuzzy model. The proposed fuzzy controller: 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule; 2) can guarantee the stability of the closed-loop fuzzy system; 3) is relatively easy to implement. Its good performance as well as its robustness to parameter changes will be shown and compared with those of the PID controller by simulation.

  • PDF

퍼지 결합 다항식 뉴럴 네트워크 기반 패턴 분류기 설계 (The Design of Pattern Classification based on Fuzzy Combined Polynomial Neural Network)

  • 노석범;장경원;안태천
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.534-540
    • /
    • 2014
  • In this paper, we propose a fuzzy combined Polynomial Neural Network(PNN) for pattern classification. The fuzzy combined PNN comes from the generic TSK fuzzy model with several linear polynomial as the consequent part and is the expanded version of the fuzzy model. The proposed pattern classifier has the polynomial neural networks as the consequent part, instead of the general linear polynomial. PNNs are implemented by stacking the simple polynomials dynamically. To implement one layer of PNNs, the various types of simple polynomials are used so that PNNs have flexibility and versatility. Although the structural complexity of the implemented PNNs is high, the PNNs become a high order-multi input polynomial finally. To estimate the coefficients of a polynomial neuron, The weighted linear discriminant analysis. The output of fuzzy rule system with PNNs as the consequent part is the linear combination of the output of several PNNs. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

Design Of Fuzzy Controller for the Steam Temperature Process in the Coal Fired Power Plant

  • Shin, Sang Doo;Kim, Yi-Gon;Lee, Bong Kuk;Bae, Young Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.187-192
    • /
    • 2004
  • In this paper, we proposed the method to design fuzzy controller using the experience of the operating expert and experimental numeric data for the robust control about the noise and disturbance instead of the traditional PID controller for the main steam temperature control of the thermal power plant. The temperature of main steam temperature process has to be controlled uniformly for the stable electric power output. The process has the problem of the hunting for the cases of various disturbances. In that case, the manual action of the operator happened to be introduced in some cases. We adopted the TSK (Takagi-Sugeno-Kang) model as the fuzzy controller and designed the fuzzy rules using the informations extracted directly from the real plant and various operating condition to solve the above problems and to apply practically. We implemented the real fuzzy controller as the Function Block module in the DCS(Distributed Control System) and evaluated the feasibility through the experimental results of the simulation.

Improvement of Practical Control Method for Positioning Systems in the Presence of Actuator Saturation by Incorporating Takagi-Sugeno(TSK) Fuzzy Anti-reset Windup

  • Ibrahim, Tarig Faisal;;Salami, M.J.E.;Albagul, Abdulgani
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.975-980
    • /
    • 2004
  • Positioning system is widely used for many practical applications. This system requires a good controller to achieve high accuracy and fast response with simple and self-adjustable design. In order to satisfy the above requirements, a new practical controller for positioning systems, namely nominal characteristic trajectory following (NCTF) controller with PI compensator, has been proposed. However, the effect of actuator saturation can not be completely compensated for integrator windup when the object parameters vary. This paper presents a method to improve the NCTF controller by overcoming the problem of integrator windup by adopting a fuzzy system. The improvement of the NCTF controller is evaluated through simulation using a rotary positioning system. The simulation result has demonstrated the effectiveness of the compensated NCTF in overcoming the problem of integrator windup.

  • PDF

다중모델기법을 이용한 비선형시스템의 퍼지모델링 (Fuzzy Modeling for Nonlinear System Using Multiple Model Method)

  • 이철희;하영기;서선학
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.323-330
    • /
    • 1997
  • In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. To express the various and complex behavior of nonlinear system, we combine multiple model method with hierachical prioritized structure, and the mountain clustering technique is used in partitioning of system. TSK rule structure is adopted to form the fuzzy rules, and Back propagation algorithm is used for learning parameters in consequent parts of the rules. Also we soften the paradigm of Mamdani's inference mechanism by using Yager's S-OWA operators. Computer simulations are performed to verify the effectiveness of the proposed method.

  • PDF

비선형 시스템의 퍼지 모델링 및 제어 (An Approach to Fuzzy Modeling and Control of Nonlinear Systems)

  • 이철희;하영기;서선학
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.425-427
    • /
    • 1997
  • In this paper, a new approach to modeling and control of nonlinear systems using fuzzy theory is presented. To express the various and complex behavior of nonlinear system, we combine multiple model method with hierachical prioritized structure. The mountain clustering technique is used in partitioning of system, and TSK rule structure is adopted to form the fuzzy rules. Also we soften the paradigm of Mamdani's inference mechanism by using Yager's S-OWA operators.

  • PDF

비선형 시스템 제어를 위한 지능형 디지털 PAM 퍼지 제어기 (Intelligent Digital PAM Fuzzy Controller for Nonlinear Systems)

  • 이상준;차대범;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2002-2004
    • /
    • 2001
  • In this paper, we propose the PAM fuzzy controller using intelligent digital redesign method for nonlinear system. We design the continuous-time controller using TSK fuzzy model of nonlinear system, and then design the intelligent digital PAM controller based on continuous-time controller. Finally, the feasibility and stability of the proposed method has been proven through a computer simulation.

  • PDF

헬리콥터의 적응 퍼지제어 (Adaptive Fuzzy Control of Helicopter)

  • 김종화;장용줄;이원창;강근택
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.564-570
    • /
    • 2003
  • 본 논문에서는 동력학이 비선형이고, 상태가 불명확하거나 시간에 따라 변화하는 헬리콥터 시스템의 제어를 위해 TSK 퍼지시스템을 이용한 적응 퍼지제어기 설계 방법을 제안한다. 논문에서 제안한 적응 퍼지제어기는 규범모델의 출력을 시스템의 출력이 추종하도록 퍼지제어기 파라미터를 직접 조정하는 규범모델 적응 퍼지제어기이다 또한 Lyapunov 함수를 이용하여 폐루프 시스템의 안정성을 보장하면서 최적인 적응법칙을 유도하였다. 실험실용 모델 헬리콥터 시스템에 대한 실험에서 시스템에 외란이 가해질 때, 제안되고 설계된 적응 퍼지제어기는 적응이 없는 퍼지제어기에 비해 시스템의 상태변화에 성공적인 제어가 실행됨을 보여주었다.

개선된 퍼지 클러스터링 (Improved Fuzzy Clusteirng)

  • 김승석;김성수;유정웅
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.6-11
    • /
    • 2005
  • 본 논문에서는 지능형 시스템의 초기 구조 및 파라미터 최적화에 필요한 개선된 성능의 퍼지 클러스터링 방법을 제안한다. 일반적인 클러스터링의 유용한 특성을 유지하면서 시스템의 구성을 적응적으로 변화시켜 전체 시스템의 학습과 성능을 개선할 수 있도록 하였다. 특히, 클러스터링 과정에서 발생하는 초기 파라미터 결정 문제와 최적화 문제를 동시에 만족하면서 일정한 구조로 수련하는 제안된 방법의 특성을 이용하여 지능형 모델에서 필요로 하는 조건이나 패턴의 구조를 자율적으로 추정하였다. 실험에서는 제안된 클러스터링 방법을 기존의 연구된 알고리즘과 비교하여 제안된 방법의 우수성을 보였다.