• Title/Summary/Keyword: TSA1

Search Result 131, Processing Time 0.021 seconds

Trichostatin A Modulates Angiotensin II-induced Vasoconstriction and Blood Pressure Via Inhibition of p66shc Activation

  • Kang, Gun;Lee, Yu Ran;Joo, Hee Kyoung;Park, Myoung Soo;Kim, Cuk-Seong;Choi, Sunga;Jeon, ByeongHwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.467-472
    • /
    • 2015
  • Histone deacetylase (HDAC) has been recognized as a potentially useful therapeutic target for cardiovascular disorders. However, the effect of the HDAC inhibitor, trichostatin A (TSA), on vasoreactivity and hypertension remains unknown. We performed aortic coarctation at the inter-renal level in rats in order to create a hypertensive rat model. Hypertension induced by abdominal aortic coarctation was significantly suppressed by chronic treatment with TSA (0.5 mg/kg/day for 7 days). Nicotinamide adenine dinucleotide phosphate-driven reactive oxygen species production was also reduced in the aortas of TSA-treated aortic coarctation rats. The vasoconstriction induced by angiotensin II (Ang II, 100 nM) was inhibited by TSA in both endothelium-intact and endothelium-denuded rat aortas, suggesting that TSA has mainly acted in vascular smooth muscle cells (VSMCs). In cultured rat aortic VSMCs, Ang II increased p66shc phosphorylation, which was inhibited by the Ang II receptor type I ($AT_1R$) inhibitor, valsartan ($10{\mu}M$), but not by the $AT_2R$ inhibitor, PD123319. TSA ($1{\sim}10{\mu}M$) inhibited Ang II-induced p66shc phosphorylation in VSMCs and in HEK293T cells expressing $AT_1R$. Taken together, these results suggest that TSA treatment inhibited vasoconstriction and hypertension via inhibition of Ang II-induced phosphorylation of p66shc through $AT_1R$.

Effects of Trichostatin A on In vitro Development of Porcine Embryos Derived from Somatic Cell Nuclear Transfer

  • Jeong, Yeon Ik;Park, Chi Hun;Kim, Huen Suk;Jeong, Yeon Woo;Lee, Jong Yun;Park, Sun Woo;Lee, Se Yeong;Hyun, Sang Hwan;Kim, Yeun Wook;Shin, Taeyoung;Hwang, Woo Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1680-1688
    • /
    • 2013
  • Many different approaches have been developed to improve the efficiency of animal cloning by somatic cell nuclear transfer (SCNT), one of which is to modify histone acetylation levels using histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA). In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from SCNT. We found that TSA treatment (50 nM) for 24 h following oocyte activation improved blastocyst formation rates (to 22.0%) compared with 8.9% in the non-treatment group and total cell number of the blastocysts for determining embryo quality also increased significantly ($88.9{\rightarrow}114.4$). Changes in histone acetylation levels as a result of TSA treatment were examined using indirect immunofluorescence and confocal microscopy scanning. Results showed that the histone acetylation level in TSA-treated embryos was higher than that in controls at both acetylated histone H3 lysine 9 (AcH3K9) and acetylated histone H4 lysine 12 (AcH4K12). Next, we compared the expression patterns of seven genes (OCT4, ID1; the pluripotent genes, H19, NNAT, PEG1; the imprinting genes, cytokeratin 8 and 18; the trophoblast marker genes). The SCNT blastocysts both with and without TSA treatment showed lower levels of OCT4, ID1, cytokeratin 8 and 18 than those of the in vivo blastocysts. In the case of the imprinting genes H19 and NNAT, except PEG1, the SCNT blastocysts both with and without TSA treatment showed higher levels than those of the in vivo blastocysts. Although the gene expression patterns between cloned blastocysts and their in vivo counterparts were different regardless of TSA treatment, it appears that several genes in NT blastocysts after TSA treatment showed a slight tendency toward expression patterns of in vivo blastocysts. Our results suggest that TSA treatment may improve preimplantation porcine embryo development following SCNT.

Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling

  • Kim, So-Jin;Park, Jin-Sook;Lee, Do-Won;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-${\alpha}$ and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B ($I{\kappa}B$) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of $I{\kappa}B$ kinase (IKK) and increased association of IKK with $I{\kappa}B$ and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis.

Inhibition of Histone Deacetylase Activity Diminishes Pressure Overloaded Cardiac Hypertrophy in Mice

  • Hong, Yun-Kyung;Song, Jong-Wook;Lee, Sang-Kil;Lee, Young-Jeon;Rho, Gyu-Jin;Kim, Joo-Heon;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.159-165
    • /
    • 2011
  • To explore the role of histone deactylase (HDAC) activation in an in vivo model of hypertrophy, we studied the effects of Trichostatin A (TSA). TSA subjected to thoracic aortic banding (TAB)-induced pressure stress in mice. In histological observations, TAB in treated mice showed a significant hypertrophic response, whereas the sham operation remained nearly normal structure with partially blunted hypertrophy. TSA treatment had no effect (measured as HW/BW) on sham-operated animals. TAB animals treated with vehicle manifested a robust ~50% hypertrophic response (p<0.05 vs sham). TAB mice treated with 2 mg/kg/day TSA manifested a blunted growth responses, which was significantly diminished (p<0.05) compared with vehicle-treated TAB mice. TAB mice treated with a lower dose of TSA (0.5 mg/kg/day) manifested a similar blunting of hypertrophic growth (~25% increase in heart mass). Furthermore, to determine activity duration of TSA in vitro, 1 nM TSA was added to H9c2 cells. Histone acetylation was initiated at 4 hr after treatment, and it was peak up to 18 hr, then followed by significantly reduced to 30 hr. We also analyzed the expression of p53 following TSA treatment, wherein p53 expression was elevated at 4 hr, and it was maintained to 24 hr after treatment. ERK was activated at 8 hr, and maintained till 30 hr after treatment suggesting an intracellular signaling interaction between TSA and p53 expression Taken together, it is suggested that HDAC activation is required for pressure-overload growth of the heart. Eventually, these data suggest that histone acetylation may be a novel target for therapeutic intervention in pressure-overloaded cardiac hypertrophy.

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Evaluation of Rhizobacterial Isolates for Their Antagonistic Effects against Various Phytopathogenic Fungi (식물 근권에서 분리한 미생물의 식물병원성 진균에 대한 길항효과 검정)

  • Kim, Yun Seok;Kim, Sang woo;Lamsal, Kabir;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.36-47
    • /
    • 2016
  • This study was conducted to evaluate five different strains of rhizobacterial isolates viz. PA1, PA2, PA4, PA5 and PA12 for biological control against Colletotrichum acutatum, C. coccodes, C. gloeosporioides, C. dematium, Botrytis cinerea, Rhizoctonia solani, Sclerotinia minor and Fusarium sp. In vitro inhibition assay was performed on three different growth mediums, potato dextrose agar (PDA), tryptic soy agar (TSA), and PDA-TSA (1:1 v/v) for the selection of potential antagonistic isolates. According to the result, isolate PA2 showed the highest inhibitory effect with 65.5% against C. coccodes on PDA and with 96.5% against S. minor on TSA. However, the same isolate showed the highest inhibition with 58.5% against C. acutatum on PDA-TSA. In addition, an in vivo experiment was performed to evaluate these bacterial isolates for biological control against fungal pathogens. Plants treated with bacteria were analyzed with phytopathogens and plants inoculated with phytopathogens were treated with isolates to determine the biological control effect against fungi. According to the result, all five isolates tested showed inhibitory effects against phytopathogens at various levels. Mode of action of these rhizobacterial isolates was evaluated with siderophore production, protease assay, chitinase assay and phosphate solubilizing assay. Bacterial isolates were identified by 16S rDNA sequencing, which showed that isolates PA1 and PA2 belong to Bacillus subtilis, whereas, PA4, PA5, and PA12 were identified as Bacilus altitudinis, Paenibacillus polymyxa and Bacillus amyloliquefaciens, respectively. Results of the current study suggest that rhizobacterial isolates can be used for the plant growth promoting rhizobacteria (PGPR) effect as well as for biological control of various phytopathogens.

Antitumor Activity of Histone Deacetylase Inhibitor Trichostatin A in Osteosarcoma Cells

  • Cheng, Dong-Dong;Yang, Qing-Cheng;Zhang, Zhi-Chang;Yang, Cui-Xia;Liu, Yi-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1395-1399
    • /
    • 2012
  • Background: Histone deacetylase (HDAC) inhibitors have been reported to induce cell growth arrest, apoptosis and differentiation of tumor cells. The present study aimed to examine the effects of trichostatin A (TSA), one such inhibitor, on the cell cycle, apoptosis and invasiveness of osteosarcoma cells. Methods: MG-63 cells were treated with TSA at various concentrations. Then, cell growth and apoptosis were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2H-tetrazolium bromide (MTT) and TUNEL assays, respectively; cell cycling was assessed by flow cytometry; invasion assays were performed with the transwell Boyden Chamber system. Results: MTT assays revealed that TSA significantly inhibited the growth of MG-63 cells in a concentration and time dependent manner. TSA treated cells demonstrated morphological changes indicative of apoptosis and TUNEL assays revealed increased apoptosis of MG-63 cells after TSA treatment. Flow cytometry showed that TSA arrested the cell cycle in G1/G2 phase and annexin V positive apoptotic cells increased markedly. In addition, the invasiveness of MG-63 cells was inhibited by TSA in a concentration dependent manner. Conclusion: Our findings demonstrate that TSA inhibits the proliferation, induces apoptosis and inhibits invasiveness of osteosarcoma cells in vitro. HDAC inhibitors may thus have promise to become new therapeutic agents against osteosarcoma.

Trichostatin A, a Histone Deacetylase Inhibitor, Potentiated Cytotoxic Effect of ionizing Radiation in Human Head and Neck Cancer Cell Lines (히스톤탈아세틸효소 억제제 Trichostatin A에 의한 인간 두경부암 셰포주의 방사선 감수성 증강)

  • Kim, Jin Ho;Shin, Jin Hee;Chie, Eui Kyu;Wu, Hong-Gyun;Kim, Jae Sung;Kim, Il Han;Ha, Sung Whan;Park, Charn Il;Kang, Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.138-141
    • /
    • 2004
  • Purpose : We have previously reported that human glioblastoma cells are sensitized to radiation-induced death after their exposure to trichostatin A (TSA), a histone deacetylase inhibitor (HDAC-1), prior to the irradiation. We aimed to measure the magnitude of the radiosensitizing effect of TSA in human head and neck cancer cell lines. Materials and Methods : Human head and neck cancer cell lines, HN-3 and HN-9, were exposed to 0, 50, 100, and 200 nM TSA for 18 hr prior to irradiation. Then, the TSA-treated cells were irradiated with 0, 2, 4, 6, and 8 Gy, and cell survival was measured by clonogenic assay. Results : Pre-irradiation exposure to TSA was found to radiosensitize HN-3 and HN-9 cell lines. In HN-9 cells, the fraction surviving after 2 Gy (SF2) was significantly reduced by treatment of TSA at concentration as low as 50 nM. However, a treatment with 200 nM TSA was required to significantly decrease SF2 in the HN-3 cell line. SER of pre-irradiation treatment with 200 nM TSA was 1.84 in HN-3 and 7.24 in HN-9, respectively. Conclusions : Our results clearly showed that human head and neck cancer cell lines can be sensitized to ionizing radiation by pre-irradiation inhibition of histone deacetylase (HDAC) using TSA, and that this potentiation might well be a general phenomenon.

Trichostatin A Induces Apoptotic Cell Death in Human Breast Carcinoma Cells through Activation of Caspase-3

  • Kim, Nsm-Deuk;Kim, Seaho;Choi, Yung-Hyun;Im, Eun-Ok;Lee, Ji-Hyeon;Kim, Dong-Kyoo
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.39-44
    • /
    • 2000
  • Trichostatin A (TSA) is a Streptomyces product, which inhibits the enzyme activity of histone deacetylase. It is also known as an inducer of apoptosis in several human cancer cell lines. In this study, we investigated the mechanism of apoptosis induced by TSA in MDA-MB-231 human breast carcinoma cells. The cytotoxicity of TSA on MDA-MB-231 cells was assessed by MTT assay. The cell viability was decreased dose-dependently and the IC\ulcorner value was about 100 ng/ml after 48 h treatment with TSA. Morphological change and DNA ladder formation, the biochemical hallmarks of apoptotic cell death, were observed after treatment of TSA in a concentration-dependent manner, which was accompanied with cleavage of poly(ADP-ribose) polymerase and $\beta$-catenin, and activation of caspase-3. TSA treatment up-regulated the expression of a cyclin-dependent kinase inhibitor p21 (Wafl/Cip1) protein, a key regulatory protein of the cell cycle. However, there is no detectable change of both Bcl-2 and Bax expressions. These results demonstrated that TSA might inhibit cell growth through apoptosis in human breast carcinoma MDA-MB-231 cells.

  • PDF

Solubilization of Hardly Soluble Phosphates and Growth Promotion of Maize (Zea mays L.) by Penicillium oxalicum Isolated from Rhizosphere

  • SHIN WANSIK;RYU JEOUNGHYUN;CHOI SEUNGJU;KIM CHUNGWOO;GADAGI RAVI;MADHAIYAN MUNUSAMY;SESHADRI SUNDARAM;CHUNG JONGBAE;SA TONGMIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1273-1279
    • /
    • 2005
  • Penicillium oxalicum strain CBPS-3F-Tsa, an efficient phosphate solubilizing fungus, was evaluated for its production of organic acid in vitro and effect of inoculation on the growth promotion of Maize under greenhouse conditions. The fungus solubilized 129.1, 118.8, and 54.1 mg P/1 of tricalcium phosphate [$Ca_{3}(PO_{4})_{2}$], aluminum phosphate ($A1PO_{4}$),and ferric phosphate ($FePO_{4}$), respectively, after 72 h of incubation. Malic acid, gluconic acid, and oxalic acid were detected in the flasks supplemented with various phosphate sources [240, 146, 145 mM/1 $A1PO_{4},\;FePO_{4},\;and\;Ca_{3}(PO_{4})_{2}$, respectively] together with a large amount of malic acid followed by the other two. The effects of inoculation of P. oxalicum CBPS-3F-Tsa on maize plants were studied under pot culture conditions. P. oxalicum CBPS-3F-Tsa was inoculated to maize plants alone or together with inorganic phosphates in the form of fused phosphates (FP) and rock phosphates (RP). Inoculation of P. oxalicum CBPS-3F-Tsa increased the plant growth and N and P accumulation in plants, compared with control plants, and also had positive effects when applied with RP. The results of this study show that the fungus P. oxalicum strain CBPS-3F-Tsa could solubilize different insoluble phosphates by producing organic acids, particularly malic acid, and also improved the efficiency of RP applied to maize plants.