• Title/Summary/Keyword: TRPV2

Search Result 50, Processing Time 0.023 seconds

Expression of vesicular glutamate transporter in transient receptor potential vanilloid 1-positive neurons in the rat trigeminal ganglion

  • Han, Hye Min;Cho, Yi Sul;Bae, Yong Chul
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.119-126
    • /
    • 2021
  • Activation of transient receptor potential vanilloid 1 (TRPV1), a calcium permeable channel expressed in primary sensory neurons, induces the release of glutamate from their central and peripheral afferents during normal acute and pathological pain. However, little information is available regarding the glutamate release mechanism associated with TRPV1 activation in primary sensory neurons. To address this issue, we investigated the expression of vesicular glutamate transporter (VGLUT) in TRPV1-immunopositive (+) neurons in the rat trigeminal ganglion (TG) under normal and complete Freund's adjuvant (CFA)-induced inflammatory pain conditions using behavioral testing as well as double immunofluorescence staining with antisera against TRPV1 and VGLUT1 or VGLUT2. TRPV1 was primarily expressed in small and medium-sized TG neurons. TRPV1+ neurons constituted approximately 27% of all TG neurons. Among all TRPV1+ neurons, the proportion of TRPV1+ neurons coexpressing VGLUT1 (VGLUT1+/TRPV1+ neurons) and VGLUT2 (VGLUT2+/TRPV1+ neurons) was 0.4% ± 0.2% and 22.4% ± 2.8%, respectively. The proportion of TRPV1+ and VGLUT2+ neurons was higher in the CFA group than in the control group (TRPV1+ neurons: 31.5% ± 2.5% vs. 26.5% ± 1.2%, VGLUT2+ neurons: 31.8% ± 1.1% vs. 24.6% ± 1.5%, p < 0.05), whereas the proportion of VGLUT1+, VGLUT1+/TRPV1+, and VGLUT2+/TRPV1+ neurons did not differ significantly between the CFA and control groups. These findings together suggest that VGLUT2, a major isoform of VGLUTs, is involved in TRPV1 activation-associated glutamate release during normal acute and inflammatory pain.

Expression and Prognostic Roles of TRPV5 and TRPV6 in Non-Small Cell Lung Cancer after Curative Resection

  • Fan, Hong;Shen, Ya-Xing;Yuan, Yun-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2559-2563
    • /
    • 2014
  • Purpose: We investigated the expression of epithelial $Ca^{2+}$ channel transient receptor potential vanilloid (TRPV) 5 and 6 in non-small-cell lung cancer (NSCLC) and assessed their prognostic role in patients after surgical resection. Materials and Methods: From January 2008 to January 2009, 145 patients who had undergone surgical resection of NSCLCs were enrolled in the study. Patient clinical characteristics were retrospectively reviewed. Fresh tumor samples as well as peritumor tissues were analyzed for TRPV5/6 expression using immune-histochemistry (IHC) and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Patients were grouped based on their TRPV5 and TRPV6 levels in the tumor tissues, followed up after surgery, and statistically analyzed to examine the prognostic roles of TRPV5 and TRPV6 on patients' survival after surgical resection of NSCLCs. Results: Using IHC, among the 145 patients who had undergone surgical resection of NSCLCs, strong protein expression (grade${\geq}2$) of TRPV5 and TRPV6 was observed in a lower percentage of primary tumor tissues than in non-tumor tissues of same patients. Similar findigns were obtained with the RT-PCR test for mRNA levels. Decreased overall mRNA levels of TRPV5 and TRPV6 were associated with a worse overall survival rate (p=0.004 and p=0.003 respectively) and shorter recurrence-free survival (p<0.001 and p<0.001 respectively). The combining effect of TRPV5 and TRPV6 on survival was further investigated using multivariate analysis. The results showed that a combination of low expression of TRPV5 and TRPV6 could be an independent predictor of poor recurrence-free survival (p=0.002). Conclusions: Decreased expression of TRPV5/6 in tumor tissues was observed in NSCLC patients and was associated with shorter median survival time after surgical resection. Combined expression of TRPV5 and TRPV6 in tumor tissues demonstrated promising prognostic value in NSCLC patients.

Cloning of Xenopus laevis TRPV2 by Gene Prediction

  • Lee, Jung Youn;Shim, Won Sik;Oh, Uhtaek
    • Genomics & Informatics
    • /
    • v.3 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • TRPV2 is a non-specific cation channel expressed in sensory neurons, and activated by noxious heat. Particularly, TRPV2 has six transmembrane domains and three ankyrin repeats. TRPV2 has been cloned from various species such as human, rat, and mouse. Oocytes of Xenopus laevis - an African clawed frog ­have been widely used for decades in characterization of various receptors and ion channels. The functional property of rat TRPV2 was also identified by this oocyte expression system. However, no TRPV2 orthologue of Xenopus laevis has been reported so far. Hence, we have focused to clone a TRPV2 orthologue of Xenopus laevis with the aid of bioinformatic tools. Because the genome sequence of Xenopus laevis is not available until now, a genome sequence of Xenopus tropicalis - a close relative species of Xenopus laevis - was used. After a number of bioinformatic searches in silico, a predicted full-length sequence of TRPV2 orthologue of Xenopus tropicalis was found. Based on this predicted sequence, various approaches such as RT-PCR and 5' -RACE technique were applied to clone a full length of Xenopus laevis TRV2. Consequently, a full-length Xenopus laevis TRPV2 was cloned from heart cDNA.

Coexpression of $P2X_3$ with TRPV1 in the Rat Trigeminal Sensory Nuclei (흰쥐 삼차신경감각핵에서 $P2X_3$와 TRPV1의 공존에 관한 연구)

  • Moon, Yong-Suk;Ryoo, Chang-Hyun;Cho, Yi-Sul;Kim, Hong-Tae;Park, Mae-Ja;Paik, Sang-Kyoo;Moon, Che-Il;Kim, Yun-Sook;Bae, Yong-Chul
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.151-157
    • /
    • 2008
  • Trigeminal primary afferents expressing $P2X_3$ or transient receptor potential vanilloid 1 (TRPV1) are involved in the transmission of nociceptive information. In order to characterize $P2X_3$- and TRPV1-immunopositive neurons in the trigeminal ganglion (TG) and trigeminal caudal nucleus (Vc), we performed immunofluorescence experiments using anti-$P2X_3$ and anti-TRPV1 antisera and a morphometric analysis. 77.4% (1,401/1.801) of all the $P2X_3$-postive neurons coexpressed TRPV1 and 51.9% (1,401/2,698) of all the THFV1-immunopositive neurons also costained for $P2X_3$ in the TG. Immunoreactivity for both $P2X_3$ and TRPV1 were present in medium-sized neurons but not in small- and large-sized neurons. $P2X_3$ and/or TRPV1-immunopositive fibers were observed in the primary afferents and their associated axons in the Vc. These fibers and terminals were distributed in the superficial lamina of Vc: $P2X_3$-immunopositive fibers and terminals were distributed in the lamina I and II, expecially in the inner part of lamina II (lamina IIi), whereas TRPV1-immunopositive ones were densely detected in the lamina I and outer part of lamina II (lamina IIo). Immunopositive fibers and terminals for both $P2X_3$ and TRPV1 were observed on the border between lamina IIi and IIo. These results suggest that terminals coexpressing $P2X_3$ and TRPV1 are involved in specific roles in the transmission and processing of orofacial nociceptive information.

Activation of the Chemosensory Ion Channels TRPA1 and TRPV1 by Hydroalcohol Extract of Kalopanax pictus Leaves

  • Son, Hee Jin;Kim, Yiseul;Misaka, Takumi;Noh, Bong Soo;Rhyu, Mee-Ra
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.550-555
    • /
    • 2012
  • TRPA1 and TRPV1 are members of the TRP superfamily of structurally related, nonselective cation channels. TRPA1 and TRPV1 are often co-expressed in sensory neurons and play an important role in somatosense such as cold, pain, and irritants. The first leaves of Kalopanax pictus Nakai (Araliaceae) have long been used as a culinary ingredient in Korea because of their unique chemesthetic flavor. In this study, we observed the intracellular $Ca^{2+}$ response to cultured cells expressing human TRPA1 (hTRPA1) and human TRPV1 (hTRPV1) by $Ca^{2+}$ imaging analysis to investigate the ability of the first leaves of K. pictus to activate the hTRPA1 and hTRPV1. An 80% ethanol extract of K. pictus (KPEx) increased intracellular $Ca^{2+}$ influx in a response time- and concentration-dependent manner via either hTRPA1 or hTRPV1. KPEx-induced response to hTRPA1 was markedly attenuated by ruthenium red, a general blocker of TRP channels, and HC-030031, a specific antagonist of TRPA1. In addition, the intracellular $Ca^{2+}$ influx attained with KPEx to hTRPV1 was mostly blocked by ruthenium red, and capsazepine, a specific antagonist of TRPV1. These results indicate that KPEx selectively activates both hTRPA1 and hTRPV1, which may provide evidence that the first leaves of K. pictus primarily activate TRPA1 and TRPV1 to induce their unique chemesthetic sense.

Specific Interaction of Rat Vanilloid Receptor, TRPV1 with Rab11-FIP3 (Rat 바닐로이드 수용체 TRPV1과 Rab11-FIP3의 특이적 결합)

  • Lee, Soon-Youl;Kim, Mi-Ran
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.312-317
    • /
    • 2011
  • Vanilloid receptor TRPV1 (known as capsaicin channel, transient receptor potential vanilloid 1) is known to be a key protein in the pain signal transduction. However, the proteins controlling the activity of the channel are not much known yet. Recently mouse Rab11-FIP3 (Rab11-family interaction protein 3) was found and reported to interact with rat TRPV1. Rab11 has been shown to play a key role in a variety of cellular processes including plasma membrane recycling, phagocytosis, and transport of secretory proteins from the trans-Golgi network. Therefore, Rab11-FIP3 was proposed to be involved in the membrane trafficking of TRPV1. In this study, the unreported rat Rab11-FIP3 was yet cloned in order to show the specific interaction of the TRPV1 and Rab11-FIP3 in the same species of rat and to examine the membrane trafficking of TRPV1. The result showed that rat Rab11-FIP3 is expected to have 489 amino acids and showed 80% identity with that of human and over 90% identity with that of mouse. Rab11-FIP3 was found to be expressed in heart, brain, kidney, testis using northern and western blot analyses. We also found that rat Rab11-FIP3 was colocalized with rat TRPV1 but not with TRPV2 of same family in the rat brain by using immunohistochemistry showing that two proteins interact specifically, suggesting the role of Rab11-FIP3 in the membrane trafficking.

TRPV1 in Salivary Gland Epithelial Cells Is Not Involved in Salivary Secretion via Transcellular Pathway

  • Choi, Seulki;Shin, Yong-Hwan;Namkoong, Eun;Hwang, Sung-Min;Cong, Xin;Yu, Guangyan;Park, Kyungpyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.525-530
    • /
    • 2014
  • Transient receptor potential vanilloid subtype 1 (TRPV1) was originally found in sensory neurons. Recently, it has been reported that TRPV1 is expressed in salivary gland epithelial cells (SGEC). However, the physiological role of TRPV1 in salivary secretion remains to be elucidated. We found that TRPV1 is expressed in mouse and human submandibular glands (SMG) and HSG cells, originated from human submandibular gland ducts at both mRNA and protein levels. However, capsaicin (CAP), TRPV1 agonist, had little effect on intracellular free calcium concentration ($[Ca^{2+}]_i$) in these cells, although carbachol consistently increased $[Ca^{2+}]_i$. Exposure of cells to high temperature (> $43^{\circ}C$) or acidic bath solution (pH5.4) did not increase $[Ca^{2+}]_i$, either. We further examined the role of TRPV1 in salivary secretion using TRPV1 knock-out mice. There was no significant difference in the pilocarpine (PILO)-induced salivary flow rate between wild-type and TRPV1 knock-out mice. Saliva flow rate also showed insignificant change in the mice treated with PILO plus CAP compared with that in mice treated with PILO alone. Taken together, our results suggest that although TRPV1 is expressed in SGEC, it appears not to play any direct roles in saliva secretion via transcellular pathway.

Functional Expression of TRPV 4 Cation Channels in Human Mast Cell Line (HMC-1)

  • Kim, Kyung-Soo;Shin, Dong-Hoon;Nam, Joo-Hyun;Park, Kyung-Sun;Zhang, Yin-Hua;Kim, Woo-Kyung;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.419-425
    • /
    • 2010
  • Mast cells are activated by specific allergens and also by various nonspecific stimuli, which might induce physical urticaria. This study investigated the functional expression of temperature sensitive transient receptor potential vanilloid (TRPV) subfamily in the human mast cell line (HMC-1) using whole-cell patch clamp techniques. The temperature of perfusate was raised from room temperature (RT, $23{\sim}25^{\circ}C$) to a moderately high temperature (MHT, $37{\sim}39^{\circ}C$) to activate TRPV3/4, a high temperature (HT, $44{\sim}46^{\circ}C$) to activate TRPV1, or a very high temperature (VHT, $53{\sim}55^{\circ}C$) to activate TRPV2. The membrane conductance of HMC-1 was increased by MHT and HT in about 50% (21 of 40) of the tested cells, and the I/V curves showed weak outward rectification. VHT-induced current was 10-fold larger than those induced by MHT and HT. The application of the TRPV 4 activator $3{\alpha}$-phorbol 12,13-didecanoate ($4{\alpha}$ PDD, $1\;{\mu}M$) induced weakly outward rectifying currents similar to those induced by MHT. However, the TRPV3 agonist camphor or TRPV1 agonist capsaicin had no effect. RT-PCR analysis of HMC-1 demonstrated the expression of TRPV4 as well as potent expression of TRPV2. The $[Ca^{2+}]_c$ of HMC-1 cells was also increased by MHT or by $4{\alpha}$ PDD. In summary, our present study indicates that HMC-1 cells express $Ca^{2+}$-permeable TRPV4 channels in addition to the previously reported expression of TRPV2 with a higher threshold of activating temperature.

Oxidation of extracellular cysteines by mercury chloride reduces TRPV1 activity in rat dorsal root ganglion neurons

  • Jin, Yun-Ju;Park, Jin-Young;Kim, Jun;Kwak, Ji-Yeon
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.181-187
    • /
    • 2011
  • Transient receptor potential vanilloid type 1 (TRPV1) receptor plays an important role as a molecular detector of noxious signals in primary sensory neurons. Activity of TRPV1 can be modulated by the change in the environment such as redox state and extracellular cations. In the present study, we investigated the effect of the mercury chloride ($HgCl_2$) on the activity of TRPV1 in rat dorsal root ganglia (DRG) neurons using whole-cell patch clamp technique. Extracellular $HgCl_2$ reversibly reduced the magnitudes of capsaicin-activated currents ($I_{cap}$) in DRG neurons in a dose-dependent manner. The blocking effect of $HgCl_2$ was prevented by pretreatment with the reducing agent dithiothreitol (DTT). Inhibition of $I_{cap}$ by $HgCl_2$ was abolished by point mutation of individual cysteine residues located on the extracellular surface of TRPV1. These results suggest that three extracellular cysteines of TRPV1, Cys616, Cys634 and Cys621, are responsible for the oxidative modulation of $I_{cap}$ by $HgCl_2$.

Mutation of a putative S-nitrosylation site of TRPV4 protein facilitates the channel activates

  • Lee, Eun-Jeoung;Shin, Sung-Hwa;Hyun, Sung-Hee;Chun, Jae-Sun;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.95-106
    • /
    • 2011
  • The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues. Nitric oxide (NO) as a gaseous signal mediator shows a variety of important biological effects. In many instances, NO has been shown to exhibit its activities via a protein S-nitrosylation mechanism in order to regulate its protein functions. With functional assays via site-directed mutagenesis, we demonstrate herein that NO induces the S-nitrosylation of TRPV4 $Ca^{2+}$ channel on the $Cys^{853}$ residue, and the S-nitrosylation of $Cys^{853}$ reduced its channel sensitivity to 4-${\alpha}$ phorbol 12,13-didecanoate and the interaction between TRPV4 and calmodulin. A patch clamp experiment and $Ca^{2+}$ image analysis show that the S-nitrosylation of $Cys^{853}$ modulates the TRPV4 channel as an inhibitor. Thus, our data suggest a novel regulatory mechanism of TRPV4 via NO-mediated S-nitrosylation on its $Cys^{853}$ residue.