• Title/Summary/Keyword: TRPV-1

Search Result 71, Processing Time 0.024 seconds

TRPV1 in Salivary Gland Epithelial Cells Is Not Involved in Salivary Secretion via Transcellular Pathway

  • Choi, Seulki;Shin, Yong-Hwan;Namkoong, Eun;Hwang, Sung-Min;Cong, Xin;Yu, Guangyan;Park, Kyungpyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.525-530
    • /
    • 2014
  • Transient receptor potential vanilloid subtype 1 (TRPV1) was originally found in sensory neurons. Recently, it has been reported that TRPV1 is expressed in salivary gland epithelial cells (SGEC). However, the physiological role of TRPV1 in salivary secretion remains to be elucidated. We found that TRPV1 is expressed in mouse and human submandibular glands (SMG) and HSG cells, originated from human submandibular gland ducts at both mRNA and protein levels. However, capsaicin (CAP), TRPV1 agonist, had little effect on intracellular free calcium concentration ($[Ca^{2+}]_i$) in these cells, although carbachol consistently increased $[Ca^{2+}]_i$. Exposure of cells to high temperature (> $43^{\circ}C$) or acidic bath solution (pH5.4) did not increase $[Ca^{2+}]_i$, either. We further examined the role of TRPV1 in salivary secretion using TRPV1 knock-out mice. There was no significant difference in the pilocarpine (PILO)-induced salivary flow rate between wild-type and TRPV1 knock-out mice. Saliva flow rate also showed insignificant change in the mice treated with PILO plus CAP compared with that in mice treated with PILO alone. Taken together, our results suggest that although TRPV1 is expressed in SGEC, it appears not to play any direct roles in saliva secretion via transcellular pathway.

TRPV1 activation induces cell death of TM3 mouse Leydig cells

  • Kim, Eun-Jin;Dang, Long Cao;Nyiramana, Marie Merci;Siregar, Adrian S.;Woo, Min-Seok;Kim, Chang-Woon;Kang, Dawon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.145-153
    • /
    • 2021
  • The role of transient receptor potential vanilloid receptor-1 (TRPV1) has been primarily investigated in pain sensory neurons. Relatively, little research has been performed in testicular cells. TRPV1 is abundantly expressed in Leydig cells of young adult mice. This study was conducted to determine the role of the TRPV1 channel in Leydig cells. TRPV1 modulators and testosterone were treated to the mouse Leydig cell line TM3 cells for 24 h. Capsaicin, a TRPV1 activator, dose-dependently induced cell death, whereas capsazepine, a TRPV1 inhibitor, inhibited capsaicin-induced cell death. Testosterone treatment reduced capsaicin-induced cell death. High concentrations of testosterone decreased TRPV1 mRNA and protein expression levels. However, TRPV1 modulators did not affect testosterone production. These results showed that capsaicin induced cell death of Leydig cells and that testosterone reduced capsaicin-induced cell death. Our findings suggest that testosterone may regulate the survival of Leydig cells in young adult mice by decreasing the expression level of TRPV1.

Functional Expression of TRPV 4 Cation Channels in Human Mast Cell Line (HMC-1)

  • Kim, Kyung-Soo;Shin, Dong-Hoon;Nam, Joo-Hyun;Park, Kyung-Sun;Zhang, Yin-Hua;Kim, Woo-Kyung;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.419-425
    • /
    • 2010
  • Mast cells are activated by specific allergens and also by various nonspecific stimuli, which might induce physical urticaria. This study investigated the functional expression of temperature sensitive transient receptor potential vanilloid (TRPV) subfamily in the human mast cell line (HMC-1) using whole-cell patch clamp techniques. The temperature of perfusate was raised from room temperature (RT, $23{\sim}25^{\circ}C$) to a moderately high temperature (MHT, $37{\sim}39^{\circ}C$) to activate TRPV3/4, a high temperature (HT, $44{\sim}46^{\circ}C$) to activate TRPV1, or a very high temperature (VHT, $53{\sim}55^{\circ}C$) to activate TRPV2. The membrane conductance of HMC-1 was increased by MHT and HT in about 50% (21 of 40) of the tested cells, and the I/V curves showed weak outward rectification. VHT-induced current was 10-fold larger than those induced by MHT and HT. The application of the TRPV 4 activator $3{\alpha}$-phorbol 12,13-didecanoate ($4{\alpha}$ PDD, $1\;{\mu}M$) induced weakly outward rectifying currents similar to those induced by MHT. However, the TRPV3 agonist camphor or TRPV1 agonist capsaicin had no effect. RT-PCR analysis of HMC-1 demonstrated the expression of TRPV4 as well as potent expression of TRPV2. The $[Ca^{2+}]_c$ of HMC-1 cells was also increased by MHT or by $4{\alpha}$ PDD. In summary, our present study indicates that HMC-1 cells express $Ca^{2+}$-permeable TRPV4 channels in addition to the previously reported expression of TRPV2 with a higher threshold of activating temperature.

Neurochemical Characterization of the TRPV1-Positive Nociceptive Primary Afferents Innervating Skeletal Muscles in the Rats

  • Shin, Dong-Su;Kim, Eun-Hyun;Song, Kwan-Young;Hong, Hyun-Jong;Kong, Min-Ho;Hwang, Se-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • Objective: Transient receptor potential vanilloid subfamily type 1 (TRPV1), a most specific marker of the nociceptive primary afferent, is expressed in peptidergic and non-peptidergic primary afferents innervating skin and viscera. However, its expression in sensory fibers to skeletal muscle is not well known. In this study, we studied the neurochemical characteristics of TRPV1-positive primary afferents to skeletal muscles. Methods: Sprague-Dawley rats were injected with total $20{\mu}l$ of 1% fast blue (FB) into the gastrocnemius and erector spinae muscle and animals were perfused 4 days after injection. FB-positive cells were traced in the L4-L5 (for gastrocnemius muscle) and L2-L4 (for erector spinae muscle) dorsal root ganglia. The neurochemical characteristics of the muscle afferents were studied with multiple immunofluorescence with TRPV1, calcitonin gene-related peptide (CGRP) and $P2X_3$. To identify spinal neurons responding to noxious stimulus to the skeletal muscle, 10% acetic acids were injected into the gastrocnemius and erector spinae muscles and expression of phospho extracellular signal-regulated kinase (pERK) in spinal cords were identified with immunohistochemical method. Results: TRPVl was expressed in about 49% of muscle afferents traced from gastrocnemius and 40% of erector spinae. Sixty-five to 60% of TRPV1-positive muscles afferents also expressed CGRP. In contrast, expression of $P2X_3$ immnoreaction in TRPV1-positive muscle afferents were about 20%. TRPV1-positive primary afferents were contacted with spinal neurons expressing pERK after injection of acetic acid into the muscles. Conclusion: It is consequently suggested that nociception from skeletal muscles are mediated by TRPV1-positive primary afferents and majority of them are also peptidergic.

Oxidation of extracellular cysteines by mercury chloride reduces TRPV1 activity in rat dorsal root ganglion neurons

  • Jin, Yun-Ju;Park, Jin-Young;Kim, Jun;Kwak, Ji-Yeon
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.181-187
    • /
    • 2011
  • Transient receptor potential vanilloid type 1 (TRPV1) receptor plays an important role as a molecular detector of noxious signals in primary sensory neurons. Activity of TRPV1 can be modulated by the change in the environment such as redox state and extracellular cations. In the present study, we investigated the effect of the mercury chloride ($HgCl_2$) on the activity of TRPV1 in rat dorsal root ganglia (DRG) neurons using whole-cell patch clamp technique. Extracellular $HgCl_2$ reversibly reduced the magnitudes of capsaicin-activated currents ($I_{cap}$) in DRG neurons in a dose-dependent manner. The blocking effect of $HgCl_2$ was prevented by pretreatment with the reducing agent dithiothreitol (DTT). Inhibition of $I_{cap}$ by $HgCl_2$ was abolished by point mutation of individual cysteine residues located on the extracellular surface of TRPV1. These results suggest that three extracellular cysteines of TRPV1, Cys616, Cys634 and Cys621, are responsible for the oxidative modulation of $I_{cap}$ by $HgCl_2$.

Cloning of Xenopus laevis TRPV2 by Gene Prediction

  • Lee, Jung Youn;Shim, Won Sik;Oh, Uhtaek
    • Genomics & Informatics
    • /
    • v.3 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • TRPV2 is a non-specific cation channel expressed in sensory neurons, and activated by noxious heat. Particularly, TRPV2 has six transmembrane domains and three ankyrin repeats. TRPV2 has been cloned from various species such as human, rat, and mouse. Oocytes of Xenopus laevis - an African clawed frog ­have been widely used for decades in characterization of various receptors and ion channels. The functional property of rat TRPV2 was also identified by this oocyte expression system. However, no TRPV2 orthologue of Xenopus laevis has been reported so far. Hence, we have focused to clone a TRPV2 orthologue of Xenopus laevis with the aid of bioinformatic tools. Because the genome sequence of Xenopus laevis is not available until now, a genome sequence of Xenopus tropicalis - a close relative species of Xenopus laevis - was used. After a number of bioinformatic searches in silico, a predicted full-length sequence of TRPV2 orthologue of Xenopus tropicalis was found. Based on this predicted sequence, various approaches such as RT-PCR and 5' -RACE technique were applied to clone a full length of Xenopus laevis TRV2. Consequently, a full-length Xenopus laevis TRPV2 was cloned from heart cDNA.

Expression of TRP Channels in Mouse Dental Papilla Cell-23 (MDPC-23) Cell Line

  • Shin, Myoung-Sang;Yeon, Kyu-Young;Oh, Seog-Bae;Kim, Joong-Soo
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.135-140
    • /
    • 2006
  • Temperature signaling can be initiated by members of transient receptor potential (thermo-TRP) channels. Hot and cold substances applied to teeth usually elicit pain sensation. Since odontoblasts constitute a well-defined layer between the pulp and the mineralized dentin, being first to encounter thermal stimulation from oral cavity, they may be involved in sensory transduction process, in addition to their primary function as formation of dentin. We investigated whether thermo-TRP channels are expressed in a odontoblast cell line, MDPC-23. The expressions of thermo-TRP channels were examined using reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry, fluorometric calcium imaging. Analysis of RT-PCR revealed mRNA expression of TRPV1, TRPV2, TRPV4 and TRPM8, but no TRPV3, TRPA1. Immunohistochemical approach failed to detect TRPV1 expression. Whereas the application of 4-phorbol-12,13-didecanoate($10\;{\mu}M$, a TRPV4 agonist), menthol(1 mM, a TRPM8 agonist) and icilin($10\;{\mu}M$, a TRPM8 agonist) produced the enhancement of intracellular calcium concentration, capsaicin($1\;{\mu}M$, a TRPV1 agonist) did not. Our results suggest that subfamily of thermo-TRP channels expressed in odontoblasts may serve as thermal or mechanical transducer in teeth.

Effects of TRPV1 in formalin-induced nociceptive behavior in the orofacial area of rats (흰쥐의 구강악안면 영역에서 포르말린 통증행위반응에 TRPV1 채널의 영향)

  • Park, Min-Kyoung;Seong, Mi-Gyung;Lee, Min-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.316-322
    • /
    • 2014
  • The present study investigated the inflammatory hypersensitivity following activation of the transient receptor potential vanilloid receptor-1(TRPV1) in rats. Experiments were carried out on male Sprague-Dawley rats weighing 220-260g. Following an subcutaneous injection of 5% formalin in the orofacial area, nociceptive scratching behavior was recorded for 9 successive 5-min intervals in rats. The subcutaneous injection of $25{\mu}L$ of 5% formalin produced noxious scratching behavior. Injection of capsaicin, TRPV1 agonist, alone into the vibrissa pad did not produced nociceptive behavior. After subcutaneous injection of capsaicin(0$0.1{\mu}g$, $1{\mu}g/10{\mu}L$) in the formalin-treated rats, nociceptive scratching behavior was recorded for 9 successive 5-min internals. Injection of capsaicin into the vibrissa pad significantly increased the number of scratches at 1 hours after injection. Noxious behavioral responses induced by subcutaneous capsaicin injection were significantly potentiated in formalin-treated rats. Pre or post-treatment with iodo-resinaferatoxin(IRTX), TRPV1 antagonist, significantly attenuated increased nociceptive behavior. These findings suggest that activation of the TRPV1 enhanced formalin-induced inflammatory pain in the orofacial area of rats.

The modulation of TRPV4 channel activity through its Ser 824 residue phosphorylation by SGK1

  • Lee, Run-Jeoung;Shin, Sung-Hwa;Chun, Jae-Sun;Hyun, Sung-Hee;Kim, Yang-Mi;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.99-114
    • /
    • 2010
  • With the consensus sequence information of the serum glucocorticoid-induced protein kinase-1 (SGK1) phosphorylation site {R-X-R-X-X-(S/T)$\Phi$; where $\Phi$ is any hydrophobic amino acid}, we noticed that the transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, harbors the putative SGK1 phosphorylation site (on its Ser 824). We have demonstrated that TRPV4 is an SGK1 authentic substrate protein, with the phosphorylation on the Ser 824 of TRPV4 by SGK1. Further, using TRPV4 mutants (S824A and S824D), we noted that the modification of the Ser 824 activates its $Ca^{2+}$ entry, and sensitizes the TRPV4 channel to 4-$\alpha$-phorbol 12,13-didecanoate (4-${\alpha}PDD$) or heat, simultaneously enhancing its active state. Additionally, we determined that the modification of the Ser 824 controls both its plasma membrane localization and its protein interactions with calmodulin. Thus, we have proposed herein that phosphorylation on the Ser 824 of TRPV4 is one of the control points for the regulation of its functions.

Discovery of Novel TRPV1 Ligands through Rational Approach Based on Its Putative Endogenous Ligand, 12(S)-HPETE

  • Min, Kyung-Hoon;Lee, Seul;Kim, Hwa-Soon;Suh, Young-Ger
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1501-1505
    • /
    • 2010
  • We report design and synthesis of the novel TRPV1 ligands through a rational approach. Simplified analogues of 12(S)-HPETE showing TRPV1 agonistic effect are disclosed. Biological evaluation revealed that substitution of functional groups without any change in conformation converted agonist into antagonist. Our work provided key information with regard to TRPV1 agonist/antagonist switching.