• Title/Summary/Keyword: TRPV channel

Search Result 32, Processing Time 0.031 seconds

Mutation of a putative S-nitrosylation site of TRPV4 protein facilitates the channel activates

  • Lee, Eun-Jeoung;Shin, Sung-Hwa;Hyun, Sung-Hee;Chun, Jae-Sun;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.95-106
    • /
    • 2011
  • The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues. Nitric oxide (NO) as a gaseous signal mediator shows a variety of important biological effects. In many instances, NO has been shown to exhibit its activities via a protein S-nitrosylation mechanism in order to regulate its protein functions. With functional assays via site-directed mutagenesis, we demonstrate herein that NO induces the S-nitrosylation of TRPV4 $Ca^{2+}$ channel on the $Cys^{853}$ residue, and the S-nitrosylation of $Cys^{853}$ reduced its channel sensitivity to 4-${\alpha}$ phorbol 12,13-didecanoate and the interaction between TRPV4 and calmodulin. A patch clamp experiment and $Ca^{2+}$ image analysis show that the S-nitrosylation of $Cys^{853}$ modulates the TRPV4 channel as an inhibitor. Thus, our data suggest a novel regulatory mechanism of TRPV4 via NO-mediated S-nitrosylation on its $Cys^{853}$ residue.

Role of Rab11 on Membrane Trafficking of Rat Vanilloid Receptor, TRPV1 (바닐로이드 수용체 TRPV1의 막수송과정에서의 Rab11의 역할)

  • Um, Ki-Bum;Lee, Soon-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3096-3102
    • /
    • 2011
  • Vanilloid receptor, TRPV1 (transient receptor potential vanilloid 1) is a non-selective cation channel that responds to a variety of pain-eliciting material including capsaicin, pH, heat. Although, membrane trafficking of TRPV1 was not much known so far, TRPV1 was reported to interact with FIP3 (family of Rab11 interacting protein 3). FIP3 was identified as one of Rab11 interacting proteins that is recently reported important in membrane trafficking of several channel proteins directly or indirectly. Therefore, in this study, we examined the role of Rab11 in the membrane trafficking of TRPV1 using cell biological and biochemical techniques. Rab11 was found really colocalized with TRPV1 based on the result of confocal microscopy. However, GST-pulldown assay, one of biochemical technique, found that Rab11 did not interact with TRPV1. Although Rab11 does not interact with TRPV1 directly, we hypothesized that Rab11 is indeed involved in the membrane trafficking of TRPV1. In order to examine further the role of Rab11 in the membrane trafficking of TRPV1, the expression of TRPV1 on the membrane was examined when the expression of Rab11 was decreased down to about 50% by siRNA technique and found decreased significantly. From this result, we can conclude that Rab11 is involved in the membrane trafficking of TRPV1 in a way of including FIP3.

Specific Interaction of Rat Vanilloid Receptor, TRPV1 with Rab11-FIP3 (Rat 바닐로이드 수용체 TRPV1과 Rab11-FIP3의 특이적 결합)

  • Lee, Soon-Youl;Kim, Mi-Ran
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.312-317
    • /
    • 2011
  • Vanilloid receptor TRPV1 (known as capsaicin channel, transient receptor potential vanilloid 1) is known to be a key protein in the pain signal transduction. However, the proteins controlling the activity of the channel are not much known yet. Recently mouse Rab11-FIP3 (Rab11-family interaction protein 3) was found and reported to interact with rat TRPV1. Rab11 has been shown to play a key role in a variety of cellular processes including plasma membrane recycling, phagocytosis, and transport of secretory proteins from the trans-Golgi network. Therefore, Rab11-FIP3 was proposed to be involved in the membrane trafficking of TRPV1. In this study, the unreported rat Rab11-FIP3 was yet cloned in order to show the specific interaction of the TRPV1 and Rab11-FIP3 in the same species of rat and to examine the membrane trafficking of TRPV1. The result showed that rat Rab11-FIP3 is expected to have 489 amino acids and showed 80% identity with that of human and over 90% identity with that of mouse. Rab11-FIP3 was found to be expressed in heart, brain, kidney, testis using northern and western blot analyses. We also found that rat Rab11-FIP3 was colocalized with rat TRPV1 but not with TRPV2 of same family in the rat brain by using immunohistochemistry showing that two proteins interact specifically, suggesting the role of Rab11-FIP3 in the membrane trafficking.

Activation of transient receptor potential vanilloid 3 by the methanolic extract of Schisandra chinensis fruit and its chemical constituent γ-schisandrin

  • Nam, Yuran;Kim, Hyun Jong;Kim, Young-Mi;Chin, Young-Won;Kim, Yung Kyu;Bae, Hyo Sang;Nam, Joo Hyun;Kim, Woo Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.309-316
    • /
    • 2017
  • Transient receptor potential vanilloid 3 (TRPV3) is a non-selective cation channel with modest permeability to calcium ions. It is involved in intracellular calcium signaling and is therefore important in processes such as thermal sensation, skin barrier formation, and wound healing. TRPV3 was initially proposed as a warm temperature sensor. It is activated by synthetic small-molecule chemicals and plant-derived natural compounds such as camphor and eugenol. Schisandra chinensis (Turcz.) Baill (SC) has diverse pharmacological properties including antiallergic, anti-inflammatory, and wound healing activities. It is extensively used as an oriental herbal medicine for the treatment of various diseases. In this study, we investigated whether SC fruit extracts and seed oil, as well as four compounds isolated from the fruit can activate the TRPV3 channel. By performing whole-cell patch clamp recording in HEK293T cells overexpressing TRPV3, we found that the methanolic extract of SC fruit has an agonistic effect on the TRPV3 channel. Furthermore, electrophysiological analysis revealed that ${\gamma}$-schisandrin, one of the isolated compounds, activated TRPV3 at a concentration of $30{\mu}M$. In addition, ${\gamma}$-schisandrin (${\sim}100{\mu}M$) increased cytoplasmic $Ca^{2+}$ concentrations by approximately 20% in response to TRPV3 activation. This is the first report to indicate that SC extract and ${\gamma}$-schisandrin can modulate the TRPV3 channel. This report also suggests a mechanism by which ${\gamma}$-schisandrin acts as a therapeutic agent against TRPV3-related diseases.

The modulation of TRPV4 channel activity through its Ser 824 residue phosphorylation by SGK1

  • Lee, Run-Jeoung;Shin, Sung-Hwa;Chun, Jae-Sun;Hyun, Sung-Hee;Kim, Yang-Mi;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.14 no.2
    • /
    • pp.99-114
    • /
    • 2010
  • With the consensus sequence information of the serum glucocorticoid-induced protein kinase-1 (SGK1) phosphorylation site {R-X-R-X-X-(S/T)$\Phi$; where $\Phi$ is any hydrophobic amino acid}, we noticed that the transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, harbors the putative SGK1 phosphorylation site (on its Ser 824). We have demonstrated that TRPV4 is an SGK1 authentic substrate protein, with the phosphorylation on the Ser 824 of TRPV4 by SGK1. Further, using TRPV4 mutants (S824A and S824D), we noted that the modification of the Ser 824 activates its $Ca^{2+}$ entry, and sensitizes the TRPV4 channel to 4-$\alpha$-phorbol 12,13-didecanoate (4-${\alpha}PDD$) or heat, simultaneously enhancing its active state. Additionally, we determined that the modification of the Ser 824 controls both its plasma membrane localization and its protein interactions with calmodulin. Thus, we have proposed herein that phosphorylation on the Ser 824 of TRPV4 is one of the control points for the regulation of its functions.

Transient Receptor Potential Cation Channel V1 (TRPV1) Is Degraded by Starvation- and Glucocorticoid-Mediated Autophagy

  • Ahn, Seyoung;Park, Jungyun;An, Inkyung;Jung, Sung Jun;Hwang, Jungwook
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.257-263
    • /
    • 2014
  • A mammalian cell renovates itself by autophagy, a process through which cellular components are recycled to produce energy and maintain homeostasis. Recently, the abundance of gap junction proteins was shown to be regulated by autophagy during starvation conditions, suggesting that transmembrane proteins are also regulated by autophagy. Transient receptor potential vanilloid type 1 (TRPV1), an ion channel localized to the plasma membrane and endoplasmic reticulum (ER), is a sensory transducer that is activated by a wide variety of exogenous and endogenous physical and chemical stimuli. Intriguingly, the abundance of cellular TRPV1 can change dynamically under pathological conditions. However, the mechanisms by which the protein levels of TRPV1 are regulated have not yet been explored. Therefore, we investigated the mechanisms of TRPV1 recycling using HeLa cells constitutively expressing TRPV1. Endogenous TRPV1 was degraded in starvation conditions; this degradation was blocked by chloroquine (CLQ), 3MA, or downregulation of Atg7. Interestingly, a glucocorticoid (cortisol) was capable of inducing autophagy in HeLa cells. Cortisol increased cellular conversion of LC3-I to LC-3II, leading autophagy and resulting in TRPV1 degradation, which was similarly inhibited by treatment with CLQ, 3MA, or downregulation of Atg7. Furthermore, cortisol treatment induced the colocalization of GFP-LC3 with endogenous TRPV1. Cumulatively, these observations provide evidence that degradation of TRPV1 is mediated by autophagy, and that this pathway can be enhanced by cortisol.

Expression and Prognostic Roles of TRPV5 and TRPV6 in Non-Small Cell Lung Cancer after Curative Resection

  • Fan, Hong;Shen, Ya-Xing;Yuan, Yun-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2559-2563
    • /
    • 2014
  • Purpose: We investigated the expression of epithelial $Ca^{2+}$ channel transient receptor potential vanilloid (TRPV) 5 and 6 in non-small-cell lung cancer (NSCLC) and assessed their prognostic role in patients after surgical resection. Materials and Methods: From January 2008 to January 2009, 145 patients who had undergone surgical resection of NSCLCs were enrolled in the study. Patient clinical characteristics were retrospectively reviewed. Fresh tumor samples as well as peritumor tissues were analyzed for TRPV5/6 expression using immune-histochemistry (IHC) and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Patients were grouped based on their TRPV5 and TRPV6 levels in the tumor tissues, followed up after surgery, and statistically analyzed to examine the prognostic roles of TRPV5 and TRPV6 on patients' survival after surgical resection of NSCLCs. Results: Using IHC, among the 145 patients who had undergone surgical resection of NSCLCs, strong protein expression (grade${\geq}2$) of TRPV5 and TRPV6 was observed in a lower percentage of primary tumor tissues than in non-tumor tissues of same patients. Similar findigns were obtained with the RT-PCR test for mRNA levels. Decreased overall mRNA levels of TRPV5 and TRPV6 were associated with a worse overall survival rate (p=0.004 and p=0.003 respectively) and shorter recurrence-free survival (p<0.001 and p<0.001 respectively). The combining effect of TRPV5 and TRPV6 on survival was further investigated using multivariate analysis. The results showed that a combination of low expression of TRPV5 and TRPV6 could be an independent predictor of poor recurrence-free survival (p=0.002). Conclusions: Decreased expression of TRPV5/6 in tumor tissues was observed in NSCLC patients and was associated with shorter median survival time after surgical resection. Combined expression of TRPV5 and TRPV6 in tumor tissues demonstrated promising prognostic value in NSCLC patients.

Cloning of Xenopus laevis TRPV2 by Gene Prediction

  • Lee, Jung Youn;Shim, Won Sik;Oh, Uhtaek
    • Genomics & Informatics
    • /
    • v.3 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • TRPV2 is a non-specific cation channel expressed in sensory neurons, and activated by noxious heat. Particularly, TRPV2 has six transmembrane domains and three ankyrin repeats. TRPV2 has been cloned from various species such as human, rat, and mouse. Oocytes of Xenopus laevis - an African clawed frog ­have been widely used for decades in characterization of various receptors and ion channels. The functional property of rat TRPV2 was also identified by this oocyte expression system. However, no TRPV2 orthologue of Xenopus laevis has been reported so far. Hence, we have focused to clone a TRPV2 orthologue of Xenopus laevis with the aid of bioinformatic tools. Because the genome sequence of Xenopus laevis is not available until now, a genome sequence of Xenopus tropicalis - a close relative species of Xenopus laevis - was used. After a number of bioinformatic searches in silico, a predicted full-length sequence of TRPV2 orthologue of Xenopus tropicalis was found. Based on this predicted sequence, various approaches such as RT-PCR and 5' -RACE technique were applied to clone a full length of Xenopus laevis TRV2. Consequently, a full-length Xenopus laevis TRPV2 was cloned from heart cDNA.

Expression of vesicular glutamate transporter in transient receptor potential vanilloid 1-positive neurons in the rat trigeminal ganglion

  • Han, Hye Min;Cho, Yi Sul;Bae, Yong Chul
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.119-126
    • /
    • 2021
  • Activation of transient receptor potential vanilloid 1 (TRPV1), a calcium permeable channel expressed in primary sensory neurons, induces the release of glutamate from their central and peripheral afferents during normal acute and pathological pain. However, little information is available regarding the glutamate release mechanism associated with TRPV1 activation in primary sensory neurons. To address this issue, we investigated the expression of vesicular glutamate transporter (VGLUT) in TRPV1-immunopositive (+) neurons in the rat trigeminal ganglion (TG) under normal and complete Freund's adjuvant (CFA)-induced inflammatory pain conditions using behavioral testing as well as double immunofluorescence staining with antisera against TRPV1 and VGLUT1 or VGLUT2. TRPV1 was primarily expressed in small and medium-sized TG neurons. TRPV1+ neurons constituted approximately 27% of all TG neurons. Among all TRPV1+ neurons, the proportion of TRPV1+ neurons coexpressing VGLUT1 (VGLUT1+/TRPV1+ neurons) and VGLUT2 (VGLUT2+/TRPV1+ neurons) was 0.4% ± 0.2% and 22.4% ± 2.8%, respectively. The proportion of TRPV1+ and VGLUT2+ neurons was higher in the CFA group than in the control group (TRPV1+ neurons: 31.5% ± 2.5% vs. 26.5% ± 1.2%, VGLUT2+ neurons: 31.8% ± 1.1% vs. 24.6% ± 1.5%, p < 0.05), whereas the proportion of VGLUT1+, VGLUT1+/TRPV1+, and VGLUT2+/TRPV1+ neurons did not differ significantly between the CFA and control groups. These findings together suggest that VGLUT2, a major isoform of VGLUTs, is involved in TRPV1 activation-associated glutamate release during normal acute and inflammatory pain.

Effects of Leejung-tang, Rikkunshito, and Bojungikgi-tang on Transient Receptor Potential Vanilloid 4 Channels (이중탕, 육군자탕, 보중익기탕의 이상지질혈증 및 고혈압과 관련된 일과성 수용체 전압 바닐로이드 4 이온통로 조절에 관한 연구)

  • Kim, Byung Joo
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.57-63
    • /
    • 2018
  • Objectives: Metabolic syndrome is defined by a cluster of major cardiovascular risk factors: obesity, insulin resistance, dyslipidemia, and arterial hypertension. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential vanilloid 4 (TRPV4) channels have been associated with the development of dyslipidemia and hypertension. The purpose of this study was to investigate the effects of Leejung-tang (Lizhong-tang), Rikkunshito, and Bojungikgi-tang (Buzhongyiqi-tang) on TRPV4 channel. Methods: Human embryonic kidney 293 cells stably transfected with the TRPV4 expression vectors were maintained in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, $5{\mu}g/mL$ blasticidin, and 0.4 mg/mL zeocin in a humidified 20% $O_2/10%$ $CO_2$ atmosphere at $37^{\circ}C$. Whole-cell patch clamp recordings were obtained using an Axopatch 700B amplifier and pClamp v.10.4 software (Molecular Devices, San Jose, CA, USA), and signals were digitalized at 5 kHz using Digidata 1422A. Results: Leejung-tang and Rikkunshito (10, 30 and 50 mg/mL) had no effects on the TRPV4 whole-cell currents at dose dependent manner. However, Bojungikgi-tang (10, 30, and 50 mg/mL) inhibited the TRPV4 whole-cell currents in a dose dependent manner and the half maximal inhibitory concentration (IC50) of Bojungikgi-tang was 18.2 mg/mL. Conclusions: These results suggest that Bojungikgi-tang plays an important roles to inhibit the TRPV4 channel, suggesting that Bojungikgi-tang is considered one of the candidate agents for the treatment of metabolic syndrome such as dyslipidemia and hypertension.