• 제목/요약/키워드: TRNSYS

검색결과 179건 처리시간 0.02초

대규모 태양열발전 기본설계 및 동특성 계산 (Basic Design and Dynamic Simulation of Large Scale Solar Thermal Power Plant)

  • 김종규;강용혁;김진수;윤환기;유창균;이상남
    • 한국태양에너지학회 논문집
    • /
    • 제27권1호
    • /
    • pp.55-61
    • /
    • 2007
  • This paper describes the procedure and calculation results of basic design and transient variation of performance of 1 MWe large scale solar thermal power plant (STPP) by using the commercial software of THERMOFLEX and TRNSYS, respectively. In order to simulate the transient variation of STPP, the results of basic design are necessary. The design standard of the STPP is 1 MWe generation with solar only at high DNI condition and then 0.6 MWe output power for 1 hour using stored energy when the DNI becomes lower unable to operate normally. The results of basic design show the important design data of flow rates, water/steam conditions at each equipments and the estimated efficiency of STPP. In addition, dynamic simulation results of STPP are predicted and plotted for one year and three different days weather data of Daejeon.

플러스에너지하우스 설계 및 에너지 성능 평가 (Design and Energy Performance Evaluation of Plus Energy House)

  • 김민휘;임희원;신우철;김효중;김현기;김종규
    • 한국태양에너지학회 논문집
    • /
    • 제38권2호
    • /
    • pp.55-66
    • /
    • 2018
  • South Korea aims to shift the 20 percent of electricity supplement from the fossil fuel including the nuclear to renewable energy systems by 2030. In order to realize this agenda in the buildings, the plus energy house is necessary to increase the renewable energy supplement beyond the zero energy house. This paper suggested KePSH (KIER Energy-Plus Solar House) and energy performance of house and renewable energy systems was investigated. The KePSH has the target of generating 40% surplus energy than the conventional house energy consumption. The plus energy house is the house that generates surplus energy from the renewable energy sources than that consumes. In order to minimize the cooling and heating load of the house, the shape design and passive parameters design were conducted. Based on the experimental data of the plug load in the typical house, the total energy consumption of the house was estimated. This paper also suggested renewable energy sources integrated HVAC system using air-source heat pump system. Two cases of renewable energy system integration methods were suggested, and energy performance of the cases was investigated using TRNSYS 17 program. The results showed that the BIPV (building integrated photovoltaic) system (i.e., CASE 1) and BIPV and BIST system (i.e., CASE 2) shows 42% and 29% of plus energy rate, respectivey. Also, CASE 1 can generate 59% more surplus energy compared with the CASE 2 under the same installation area.

BES 프로그램을 이용한 국내 대표적 대형온실의 에너지 부하 예측 (Prediction of Greenhouse Energy Loads using Building Energy Simulation (BES))

  • 이성복;이인복;홍세운;서일환;;권경석;하태환;한창평
    • 한국농공학회논문집
    • /
    • 제54권3호
    • /
    • pp.113-124
    • /
    • 2012
  • Reliable estimation of energy load inside the greenhouse and the selection of cooling and heating facilities are very important preceding factors to save energy as well as initial and maintenance costs of operating a greenhouse. Recently, building energy simulation (BES) technique to simulate a model similar to the actual conditions through a variety of dynamic simulation methods, and predict and analyze the flow of energy is being actively introduced and developed. As a fundamental research to apply the BES technique which is mainly used for analysis of general buildings, to greenhouse, this research designed four types of naturally-ventilated greenhouses using one of commercial programs, TRNSYS, and then compared and analyzed their energy load properties, by applying meteorological data collected from six regions in Korea. When comparing the greenhouse load of each region depending on latitude and topographical characteristics through simulation, Chuncheon had nearly 9~49 % higher heating load per year than other regions, but its annual cooling load was the reverse to it. Except for Jeju, 1-2W type greenhouses in five regions showed about 17 % higher heating load than a widespan type greenhouse, and 1-2W type greenhouses in Chuncheon, Suwon, Cheongju, Daegu, Cheonju and Jeju had 23 %, 20 %, 17 %, 16 %, 18 % and 20 % higher cooling load respectively than a wide span-type one. Glasshouse and vinyl greenhouse showed 8~11 % and 10~12 % differences respectively in heating load, while 2~10 % and 7~10 % differences in cooling load respectively.

외기보상제어 적용에 따른 지열 히트펌프 시스템의 에너지 효율 향상에 관한 연구 (A Study on the Energy Efficiency of a Geothermal Heat Pump System in use the Outdoor Reset Control Application)

  • 정영주;김효준;이용호;황정하;조영흠
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.45-52
    • /
    • 2015
  • The government is fostering a renewable energy industry as an alternative to handle the energy crisis. Among the renewable energy systems available, geothermal energy is being highlighted as being highly efficient and safely operable without the effect of outdoor air. Accordingly, a study on the geothermal heat pump is in progress in various worldwide perspective. However, Geothermal energy is only in charge of part load of the building due to the high initial installation cost in korea. Moreover, its efficiency is reduced due to the use of independent existing heat sources. In this study, after selecting the building containing the actual installed geothermal heat pump, the use of excellent geothermal heat pump systems was maximized in terms of the energy efficiency. The objective of this study is to show the operation method of geothermal heat pump system to improve energy efficiency through the TRNSYS simulation. This paper proposed operation methods of geothermal heat pump control according to outdoor air temperature. The result of this study is that existing operation method had some problems and if offered improvement is applied to real condition, energy consumption would be decreased.

사무소 건물 태양열급탕시스템의 LCC 최적화에 따른 에너지성능 변화 분석 (Energy Performance Variation of Solar Water Heating System by LCC Optimization in an Office Building)

  • 고명진;최두성;장재동;김용식
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.89-98
    • /
    • 2011
  • This study examined the energy performance according to the main design parameters of a solar water heating system for an office building using the life cycle cost (LCC) optimization simulations. The LCC optimization simulations of the system were conducted with TRNSYS and GenOpt employing the Hooke-Jeeves algorithm for cases where water temperature was $60^{\circ}C$ and $50^{\circ}C$. The results showed that for water temperature at $60^{\circ}C$ and $50^{\circ}C$ the global radiation incident on the collector could be decreased by 16.98% and 28.52%, collector useful energy gain could be decreased by 15.04% and 22.59%, energy to load from storage tank could be decreased by 10.86% and 18.06% and AH energy to load could be increased by 16.86% and 38.50% respectively compared to a non-optimized system. The annual average collection efficiency of the collector was increased by 0.88% for $60^{\circ}C$ and 2.78% for $50^{\circ}C$ because of increase of collector slope and decrease of the mass flow rate per collector area. The annual average efficiency of the system was increased by 1.74% and 3.47% compared to the basis system. However, the annual solar fraction of the system was decreased by 6.68% for $60^{\circ}C$ and 11.26% for $50^{\circ}C$ due to decrease of collector area and storage tank volume.

블라인드 도입과 창면적비에 따른 표준건축물의 에너지 수요 저감에 대한 시뮬레이션 연구 (A Study on Simulation for Decreasing Energy Demand According to Window-to-Wall Ratio and Installation Blind System in Building)

  • 강석민;이태규;김정욱
    • 한국건축친환경설비학회 논문집
    • /
    • 제12권6호
    • /
    • pp.531-542
    • /
    • 2018
  • Building energy demands have highly risen in modern society; thus, It is necessary to reduce building energy demands especially commercial buildings adopting a curtain wall architecture. Curtain wall architectures have a high ratio of windows which is a vulnerable in heat insulations as cladding. In order to complement insulation performance of windows in these buildings, there are various methods adopted often such as installing blinds, wing wall and films. There are two suggestions of this paper. 1) WWR (Window-to-Wall Ratio) makes a impaction of energy demands in buildings. 2) Another one is an efficiency of blind systems which are installed in buildings in order to reduce cooling demands. It is also critical to make fundamental model for low-energy building construction by processing a lot of simulation As a result by this study, 1) an external blind system is more useful for reducing cooling energy demands rather than an internal blind system. 2) Buildings which have a large window require more amount of cooling demands. In case of WWR 45%, it needs more cooling energy rather than WWR 15% model's 3) Adopting blind system would reduce energy demands. WWR 45% model with external blind systems reduces about 4% of cooling energy demands compared to same model without any blind systems.4) it is necessary to study an efficiency of blind systems combined with renewable energy and it will be possible to reduce more energy demand in building significantly.

BES를 사용한 에너지 절감형 양돈장의 지열히트펌프 적정 용량 산정 (Estimation of Adequate Capacity of Ground Source Heat Pump in Energy-saving Pig Farms Using Building Energy Simulation)

  • 이성원;오병욱;박광우;서일환
    • 한국농공학회논문집
    • /
    • 제64권1호
    • /
    • pp.1-13
    • /
    • 2022
  • In Korea, attention is being paid to the use of renewable energy in the livestock industry, and Ground Source Heat Pump (GSHP), which is advantageous for temperature control, is considered as one of the ways to reduce the use of fossil fuels. But GSHP is expensive to install, which proper capacity calculation is required. GSHP capacity is related to its maximum energy load. Energy loads are affected by climate characteristics and time, so dynamic analysis is required. In this study, the optimal capacity of GSHP was calculated by calculating the heating and cooling load of pig farms using BES (Building Energy Simulation) and economic analysis was performed. After designing the inside of the pig house using TRNSYS, one of the commercial programs of the BES technique, the energy load was calculated based on meteorological data. Through the calculated energy load, three heating devices and GSHP used in pig farms were analyzed for economic feasibility. As a result, GSHP's total cost of ownership was the cheapest, but the installation cost was the highest. In order to reduce the initial cost of GSHP, the capacity of GSHP was divided, and a scenario was created in which some of it was used as an auxiliary heating device, and economic analysis was conducted. In this study, a method to calculate the proper capacity of GSHP through dynamic energy analysis was proposed, and it can be used as data necessary to expand the spread of GSHP.

저에너지건축물 설계를 위한 건축물 단열성능의 효과적 조정과 야간외기 도입에 따른 에너지 시뮬레이션 연구 (A Study on the Effective Adjustment of Building Insulation Performance and the Application of the Night Purge Ventilation System for Low Energy Building Design)

  • 윤현수;이태규;김정욱
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.625-632
    • /
    • 2018
  • 본 연구는 최근 자원고갈 문제에 따른 에너지 절감을 바탕으로 총 에너지 수요에서 높은 비중을 차지하고 있는 건축물 에너지의 수요 감축에 목적을 두었고 국내에서 에너지절약형 건축물 설계를 위해 고시한 단열기준을 보다 효과적으로 조정하기 위한 보완점을 제시하고 에너지절약형 고단열, 고기밀 건축물의 쾌적성 유지의 한계점을 추가 보완하고자 야간외기 환기시스템을 도입하며 종합하여 최종 저에너지건축물 설계모델을 제시하였다. 먼저, 단열성능의 효과적 조정 모델은 건축물의 각 경사면별로 다르게 조정하여 각각의 수요 민감도를 충분히 고려할 수 있는 방법을 제시하고, 야간외기 도입 모델의 경우 건축물의 에너지 성능을 최대로 할 수 있는 모델을 선정하였다. 두 가지 모델을 결합한 최종 저에너지건축물 모델은 결과적으로 대상 건축물의 남, 북의 경사면 단열을 강화한 모델과 야간외기를 통한 환기 시스템을 단시간 운전한 모델이었으며 국내 단열기준에 의거한 Base 모델과 비교할 때 약 6~7%의 절감효과를 보였다. 따라서, 본 연구에서 제시하는 효과적 단열조정법과 야간외기 도입은 저에너지건축물 모델 설계에 있어 수요 민감도 분석 선행의 필요성을 환기시키는 점에서 시사점이 높고 대상 건축물의 건물에너지 수요를 저감할 수 있는 설계모델로 활용도가 높을 것이다.

건물 에너지 시뮬레이션을 이용한 반밀폐형 온실의 동적 에너지 부하 예측 및 수소연료전지 3중 열병합 시스템 적정 용량 산정 (Optimal Capacity Determination of Hydrogen Fuel Cell Technology Based Trigeneration System And Prediction of Semi-closed Greenhouse Dynamic Energy Loads Using Building Energy Simulation)

  • 이승헌;김락우;김찬민;석희웅;윤성욱
    • 생물환경조절학회지
    • /
    • 제32권3호
    • /
    • pp.181-189
    • /
    • 2023
  • 수소는 다양한 신재생에너지 중 환경친화적인 에너지로 각광받고 있지만 농업에 적용된 사례는 드물다. 본 연구는 수소연료전지 삼중 열병합 시스템을 온실에 적용하여 에너지를 절약하고 온실가스를 줄이고자 한다. 이 시스템은 배출된 열을 회수하면서 수소로부터 난방, 냉각 및 전기를 생산할 수 있다. 수소 연료 전지 삼중 열 병합 시스템을 온실에 적용하기 위해서는 온실의 냉난방 부하 분석이 필요하다. 이를 위해서는 온실의 형태, 냉난방 시스템, 작물 등을 고려해야 한다. 따라서 본 연구에서는 건물 에너지 시뮬레이션(BES)을 활용하여 냉난방 부하를 추정하고자 한다. 전주지역의 토마토를 재배하는 반밀폐형 온실을 대상으로 2012년부터 2021년까지의 기상데이터를 수집하여 분석했다. 온실 설계도를 참고하여 피복재와 골조를 모델화하여 작물 에너지와 토양 에너지 교환을 실시했다. 건물 에너지 시뮬레이션의 유효성을 검증하기 위해 작물의 유무에 의한 분석, 정적 에너지 및 동적 에너지 분석을 실시했다. 또한 월별 최대 냉난방 부하 분석에 의해 평균 최대 난방 용량 449,578kJ·h-1, 냉방 용량 431,187kJ·h-1이 산정되었다.