• Title/Summary/Keyword: TRIP steel

Search Result 118, Processing Time 0.036 seconds

The study on the optimal control of generators on the single operation of electric power system in Gwangyang steel works (광양제철소 전력계통 단독 운전시 발전기 최적제어방안 연구)

  • Kwak, In-Cheol;Shin, Min-Kyo;Coi, Yun-Jong;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.357-359
    • /
    • 2006
  • The electric power system of Kwangyang steel works needs to keep the parallel operation with the system of KOPEC(Korea Electric Power Corporation) for supplying the power with safety. Once it is separated from KOPEC due to an accident, it operates the automatic Mill trip system to prevent huge fluctuating loads from the serious frequency drop. In spite of that, it is recent situations that the continuous growth of electric loads facilitates the frequency drop. Therefore, this paper proposes a model of generator control system so as to quantitatively analyze the response characteristics to the frequency change under the single operation, and also suggests the strategy for minimizing the frequency changes. The simulation results show it is desirable to operate the generators by 3% speed droop and 10% load limiter.

  • PDF

Characteristics of the Warm Deep Drawability of a Transformation-Induced Plasticity Steel Sheet

  • 서대교;장성호;공경환
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.221-221
    • /
    • 1999
  • Warm deep drawability in a square cup drawing was investigated using a newly developed high-strength steel sheet with retained austenite that was transformed into martensite during formation. For this investigation, six different temperatures between room temperature and 250℃, and five different drawing ratios ranging from 2.2 to 2.6 were considered. The results showed that the maximum drawing force and the drawing depth were affected by the change in temperature, and a more stable thickness strain distribution was observed at elevated temperatures. However, blue shortness occurred at over 200℃. FEM analysis using the LS-DYNA code was used to compare the experimental results with the numerical results for the thickness strain distribution.

Tensile properties and Spot Weldability of Trip High Strength Steel Sheet (Trip형 고장력강판의 인장성질 및 점용접성)

  • Kang, C.Y.;Kim, H.J.;Kim, C.G.;Lee, B.W.;Lee, M.Y.;Lee, G.H.;Kim, T.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.295-304
    • /
    • 1998
  • The effects of retained austenite and carbon content in the retained austenite on the tensile strength-elongation balance and spot weldability of TRIP high strength steel sheet have been investigated. The retained austenite of granular type increased with increasing intercritical annealing and austempering temperature, and film type was increased with the increase of austempering time. The volume fraction of retained austenite increased with decreasing intereritical annealing temperature, and the maximum value was obtained at austempering temperature of $400^{\circ}C$. The values of tensile strength-elongation balance increased with decreasing intercritical annealing temperature and maximum value was obtained at austempering temperature of $400^{\circ}C$. The maximum value of tensile strength-elongation balance was obtained at a retained austenite content of about 12%. Tensile shear strength of the specimens with retained austenite was higher than that of the normalizing specimens. With increasing welding current and time, the tensile shear strengh and nugget diameter increased, while nugget thickness showed the peak value and then decreased. The optimum range of welding condition at the given welding pressure of 350kgf was 7~11kA and 10~15 cycles.

  • PDF

Influence of Selective Oxidation Phenomena in CGLs on Galvanized Coating Defects Formation

  • Gong, Y.F.;Birosca, S.;Kim, Han S.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steel. The formation and morphology of the oxides of alloying elements in High Strength Interstitial Free (HS-IF), Dual Phase (DP) and Transformation-Induced Plasticity (TRIP) steels are strongly influenced by the furnace dew point, and the presence of specific oxide may result in surface defects and bare areas on galvanized sheet products. The present contribution reviews the progress made recently in understanding the selective formation of surface and subsurface oxides during annealing in hot dip galvanizing and conventional continuous annealing lines. It is believed that the surface and sub-surface composition and microstructure have a pronounced influence on galvanized sheet product surface quality. In the present study, it is shown that the understanding of the relevant phenomena requires a combination of precise laboratory-scale simulations of the relevant technological processes and the use of advanced surface analytical tools.

A Simplified Approach for Predicting Springback in U-Draw Bending of Sheet Metals (용접 판재의 U 드로오 벤딩에서 스프링백 예측을 위한 이론적 단순화)

  • Chang S. H;Seo D. G.
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.678-688
    • /
    • 2004
  • The U-draw bending operation is known as a representative test method for springback evaluation of sheet metals since the sheet in U-draw bending operation undergoes stretching, bending and unbending deformations occurred at the stamping process. In this study, a simplified approach was proposed for predicting springback and side-wall curls of tailor-welded blank in U-draw bending operations, using moment-curvature relationships derived for sheets undergoing stretching, bending and unbending deformation. Two different welded strips were adopted to compare the effects of weld-line locations on the springback. One (type A) was welded along the centerline of the strip-width and the other (type B) was welded along the centerline of the strip-length. To investigate the effect of different thickness combination on the springback, the tailor-welded strips were joined by the laser welding process and consisted of three types of thickness combinations of sheets, SCP1 0.8t * SCP1 1.2t, SCP1 0.8t * SCP1 1.6t and SCP1 0.8t * TRIP 1.0t. Some calculated results by the simplified formula were compared with experimental results.

Effects of Heat Treatment Condition on the Mechanical Properties in Fe-0.4%C-2.3%Si Steel (Fe-0.4C-2.3Si강의 기계적 성질에 미치는 오스템퍼링 열처리 조건의 영향)

  • Son, Je-Young;Song, June-Hwan;Kim, Ji-Hun;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.104-108
    • /
    • 2012
  • The effect of heat treatment on mechanical properties of 0.4C-2.3Si(wt%) steel with bainitic ferrite matrix were investigated. This steel has been synthesized intergrating concepts from TRIP(Transformation Induced Plasticity) steel & Austempered Ductile Cast Iron(ADI) technology. The low alloy medium carbon (0.4 %C) steel with high silicon (2.3 %Si) was initially annealed for 60 min at $800^{\circ}C$, $820^{\circ}C$ and $840^{\circ}C$ respectively in the intercritical region and then subsequently austempered at various temperatures at $260^{\circ}C$, $320^{\circ}C$ and $380^{\circ}C$ for 30 min in a salt bath. The mechanical properties were measured by using a tensile test. A detailed study of the microstructure of this steel after heat treatment was carried out by means of electron back scattering diffraction (EBSD) technic. In this study, a new low alloy steel with high strength (780~1,050MPa) and exceptionally high ductility (20~40%) was obtained.

Investigation of Galling In Forming Galvanized Steel Sheet

  • Altan, Taylan;Kardes, Nimet;Kim, Hyunok
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • The major purpose of the present study is to evaluate the performance of various galvanized (GI) or galvannealed (GA) mild steels and AHSS in stamping applications. Finite Element Analysis (FEA) of selected stamping operations was conducted to estimate the critical pressure boundary conditions that exist in practice. Using this information, laboratory tribotests, e.g. Twist Compression (TCT), Deep Drawing (DDT) and Strip Drawing (SDT) Tests, were developed to evaluate the performance of selected lubricants and die materials/coatings in forming galvanized steels of interest. The sheet materials investigated included mild steels and AHSS (e.g. DP600 GI/GA, DP780 GI/GA, TRIP780 GA and DP980 GI/GA). Experimental results showed that galvanized material resulted in more galling, while galvannealed material showed more powdering and flaking. The surface roughness and chemical composition of galvanized sheet materials affected the severity of galling under the same testing conditions, i.e. lubricants and die materials/coatings. The results of this study helped to determine the critical interface pressure that initiates lubricant failure and galling in stamping selected galvanized sheet materials. Thus, to prevent or postpone the critical interface conditions, the results of this study can be used to select the optimum combination of galvanized sheet, die material, die coating and lubricant for forming structural automotive components.

Springback Control in the Forming Processes for High-Strength Steel Sheets (고강도 강판 성형 공정의 스프링백 제어)

  • Yang WooYul;Lee SeungYeol;Keum YoungTag;Hwang JinYoung;Yoon ChiSang;Shin ChirlSoo;Cho WonSuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.35-40
    • /
    • 2003
  • In order to develope springback control technology for high-strength steel sheets, some studies have been conducted: dome stretching test, stepped s-rail forming and springback measurement, and optimally shaped initial blank design. First, to find out the formability of TRIP60, dome stretching test was performed. Next the stepped s-rail die, which was designed to form a channel type panel with large twist and wall curl, was manufactured and used to know the effect of controlling forming variables, such as blank holding force and flange amount on the springback. Furthermore, new measurement method of the springback was introduced to define wall curl and twist in geometrically complex panels. Finally, the optimally shaped initial blank was employed to verify one of the best ways to control the springback in channel type, high strength sheet panels.

  • PDF

A Study on the Spot Welding and Fatigue Design of High Strength Steel Sheets for Light Weight Vehicle Body (경량 차체용 고장력 강판의 Spot 용접과 피로설계에 관한 연구)

  • Heo, Jeong-Beom;Bae, Dong-Ho;Yoon, Chi-Sang;Kwon, Soon-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The recent tendency in the automobile industries is toward light weighting vehicle body to improve the problems by environmental pollution as well as improving fuel cost. The effective way to reduce the weight of vehicle body seems to be application of new materials for body structure and such trend is remarkable. Among the various materials for vehicle body, stainless steel sheet (for example, 301L and 304L), TRIP steel and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life design criteria of body structure, it is important and require condition to assess spot weldability of them and fatigue strength of spot welded lap joints which were fabricated under optimized spot welding condition. And, recently, a new issue in the design of the spot welded structure is to predict economically fatigue design criterion without additional fatigue tests. In general, for fatigue design of the spot-welded thin sheet structure, additional fatigue tests according to the welding condition, material, joint type, and fatigue loading condition are generally required. This indicates that much cost and time for it should be consumed. Therefore, in this paper, the maximum stresses at nugget edge of spot weld were calculated through nonlinear finite element analysis first. And next, obtained the ${\Delta}P-N_{f}$ relation through the actual fatigue tests on spot welded lap joints of similar and dissimilar high strength steel sheets. And then, the ${\Delta}P-N_{f}$ relation was rearranged in the ${\Delta}{\sigma}-N_{f}$ relation. From this ${\Delta}{\sigma}-N_{f}$ relation, developed the fatigue design technology for spot welded lap joints of them welded using the optimized welding conditions.

  • PDF

Seismic risk assessment of concrete-filled double-skin steel tube/moment-resisting frames

  • Hu, Yi;Zhao, Junhai;Zhang, Dongfang;Zhang, Yufen
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.249-259
    • /
    • 2018
  • This paper aims to assess the seismic risk of a plane moment-resisting frames (MRFs) consisting of concrete-filled double skin steel tube (CFDST) columns and I-section steel beams. Firstly, three typical limit performance levels of CFDST structures are determined in accordance with the cyclic tests of seven CFDST joint specimens with 1/2-scaled and the limits stipulated in FEMA 356. Then, finite element (FE) models of the test specimens are built by considering with material degradation, nonlinear behavior of beam-column connections and panel zones. The mechanical behavior of the concrete material are modeled in compression stressed condition in trip-direction based on unified strength theory, and such numerical model were verified by tests. Besides, numerical models on 3, 6 and 9-story CFDST frames are established. Furthermore, the seismic responses of these models to earthquake excitations are investigated using nonlinear time-history analyses (NTHA), and the limits capacities are determined from incremental dynamic analyses (IDA). In addition, fragility curves are developed for these models associated with 10%/50yr and 2%/50yr events as defined in SAC project for the region on Los Angeles in the Unite State. Lastly, the annual probabilities of each limits and the collapse probabilities in 50 years for these models are calculated and compared. Such results provide risk information for the CFDST-MRFs based on the probabilistic risk assessment method.