• Title/Summary/Keyword: TRIB3

Search Result 4, Processing Time 0.019 seconds

TRIB2 Stimulates Cancer Stem-Like Properties through Activating the AKT-GSK3β-β-Catenin Signaling Axis

  • Kim, Dae Kyoung;Kim, Yu Na;Kim, Ye Eun;Lee, Seo Yul;Shin, Min Joo;Do, Eun Kyoung;Choi, Kyung-Un;Kim, Seung-Chul;Kim, Ki-Hyung;Suh, Dong-Soo;Song, Parkyong;Kim, Jae Ho
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.481-492
    • /
    • 2021
  • Tribbles homolog 2 (TRIB2) is implicated in tumorigenesis and drug resistance in various types of cancers. However, the role of TRIB2 in the regulation of tumorigenesis and drug resistance of cancer stem cells (CSCs) is still elusive. In the present study, we showed increased expression of TRIB2 in spheroid-forming and aldehyde dehydrogenase-positive CSC populations of A2780 epithelial ovarian cancer cells. Short hairpin RNA-mediated silencing of TRIB2 expression attenuates the spheroid-forming, migratory, tumorigenic, and drug-resistant properties of A2780 cells, whereas overexpression of TRIB2 increases the CSC-like characteristics. TRIB2 overexpression induced GSK3β inactivation by augmenting AKT-dependent phosphorylation of GSK3β at Ser9, followed by increasing β-catenin level via reducing the GSK3β-mediated phosphorylation of β-catenin. Treatment of TRIB2-ovexpressed A2780 cells with the phosphoinositide3-kinase inhibitor LY294002 abrogated TRIB2-stimulated proliferation, migration, drug resistance of A2780 cells. These results suggest a critical role for TRIB2 in the regulation of CSC-like properties by increasing the stability of β-catenin protein via the AKT-GSK3β-dependent pathways.

TFAP2C Promotes Cell Proliferation by Upregulating CDC20 and TRIB3 in Non-small Cell Lung Cancer Cells (비소세포폐암 발달 과정에서 TFAP2C에 의해 발현되는 CDC20과 TRIB3의 원암유전자 기능에 관한 연구)

  • Kim, Dain;Do, Hyunhee;Kang, JiHoon;Youn, BuHyun;Kim, Wanyeon
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.645-652
    • /
    • 2019
  • Non-small cell lung cancer (NSCLC) has the infamous distinction of being the leading cause of global cancer-related death over the past decade, and novel molecular targets are urgently required to change this status. We previously conducted a microarray analysis to investigate the association of transcription factor activating enhancer-binding protein 2C (TFAP2C) with NSCLC and revealed its oncogenic roles in NSCLC development. In this study, to identify new biomarkers for NSCLC, we focused on several oncogenes from the microarray analysis that are transcriptionally regulated by TFAP2C. Here, the cell division cycle 20 (CDC20) and tribbles pseudokinase 3 (TRIB3) were subsequently found as potential potent oncogenes as they are positively regulated by TFAP2C. The results showed that the mRNA and protein levels of CDC20 and TRIB3 were down-regulated in two NSCLC cell lines (NCI-H292 and NCI-H838), which were treated with TFAP2C siRNA, and that the overexpression of either CDC20 or TRIB3 was responsible for promoting cell viability in both NSCLC cell lines. In addition, apoptotic levels of NCI-H292 and NCI-H838 cells treated with TFAP2C siRNA were found to be suppressed by the overexpression of either CDC20 or TRIB3. Together, these results suggest that CDC20 and TRIB3 are positively related to NSCLC tumorigenesis and that they should be considered as potential prognostic markers for developing an NSCLC therapy.

Aluminum Nanoparticles Induce ERK and p38MAPK Activation in Rat Brain

  • Kwon, Jung-Taek;Seo, Gyun-Baek;Jo, Eunhye;Lee, Mimi;Kim, Hyun-Mi;Shim, Ilseob;Lee, Byung-Woo;Yoon, Byung-Il;Kim, Pilje;Choi, Kyunghee
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.181-185
    • /
    • 2013
  • Aluminum nanoparticles (Al-NPs) are one of the most widely used nanomaterial in cosmetics and medical materials. For this reason, Al-NP exposure is very likely to occur via inhalation in the environment and the workplace. Nevertheless, little is known about the mechanism of Al-NP neurotoxicity via inhalation exposure. In this study, we investigated the effect AL-NPs on the brain. Rats were exposed to Al-NPs by nasal instillation at 1 mg/kg body weight (low exposure group), 20 mg/kg body weight (moderate exposure group), and 40 mg/kg body weight (high exposure group), for a total of 3 times, with a 24-hr interval after each exposure. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated that the presence of aluminum was increased in a dose-dependent manner in the olfactory bulb (OFB) and the brain. In microarray analysis, the regulation of mitogen-activated protein kinases (MAPK) activity (GO: 0043405), including Ptprc, P2rx7, Map2k4, Trib3, Trib1, and Fgd4 was significantly over-expressed in the treated mice than in the controls (p = 0.0027). Moreover, Al-NPs induced the activation of ERK1 and p38 MAPK protein expression in the brain, but did not alter the protein expression of JNK, when compared to the control. These data demonstrate that the nasal exposure of Al-NPs can permeate the brain via the olfactory bulb and modulate the gene and protein expression of MAPK and its activity.

Structures and some Properties of the Antimicrobial Compounds in the Red Alga, Symphyocladia latiuscula (참보라색우무에서 추출한 항균물질의 구조 및 특성)

  • LIM Chi-Won;LEE Jong-Soo;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.280-287
    • /
    • 2000
  • Three antimicrobial compounds (SL-l, SL-2 and SL-3) were isolated and identified from the marine red alga, Symphyocladia latiuscula. In addition, their biological functionalities such as cytotoxicity and desmutagenic activity were investigated. From the cryophyllized S. JatiuscuJa, SL-l, SL-2 and SL-3 were purified by solvent extractions and HPLC.SL-2 was crystallized in benzene-diethyl ether solvent. On the EI-MS spectra, it was found that they had three bromines in their structure which showed typical signal strength ratios at $M^+, [M+2]^+, [M+4]^+, [M+6]^+ (13: 38: 37: 12)$. $SL-l$ was identified as 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol ($C_8H_7Br_3O_3, MW=374$) by NMR and MS spectra. SL-2 was assigned as 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether ($C_8H_7Br_3O_3, MW=388$) and confirmed by X-ray crystallographic analysis. SL-3 was presumed as an isomer of SL-2. Methanol extract of the S. latiuscula showed antimicrobial activities against all strains tested (bacteria, 15 strains; yeasts, 17 strains; fungi, 4 strains), much or less. The strongest inhibition activity of the methanol extract was to the Vibrio mimicus ($50 {\mu}g/ml$) and V. vulnificus ($50 {\mu}g/ml$). The mice injected intraperitoneally with 3 mg of SL-l and 5 mg of 5L-2 showed no acute toxicity response. SL-2 showed higher desmutagenic activity than SL-l against PhIP and MeIQx.

  • PDF