DOI QR코드

DOI QR Code

TFAP2C Promotes Cell Proliferation by Upregulating CDC20 and TRIB3 in Non-small Cell Lung Cancer Cells

비소세포폐암 발달 과정에서 TFAP2C에 의해 발현되는 CDC20과 TRIB3의 원암유전자 기능에 관한 연구

  • Kim, Dain (Department of Science Education, Korea National University of Education) ;
  • Do, Hyunhee (Department of Science Education, Korea National University of Education) ;
  • Kang, JiHoon (Department of Integrated Biological Science, Pusan National University) ;
  • Youn, BuHyun (Department of Integrated Biological Science, Pusan National University) ;
  • Kim, Wanyeon (Department of Science Education, Korea National University of Education)
  • 김다인 (한국교원대학교 일반대학원 과학교육학과) ;
  • 도현희 (한국교원대학교 일반대학원 과학교육학과) ;
  • 강지훈 (부산대학교 일반대학원 생명시스템학과) ;
  • 윤부현 (부산대학교 일반대학원 생명시스템학과) ;
  • 김완연 (한국교원대학교 일반대학원 과학교육학과)
  • Received : 2019.04.04
  • Accepted : 2019.06.19
  • Published : 2019.06.30

Abstract

Non-small cell lung cancer (NSCLC) has the infamous distinction of being the leading cause of global cancer-related death over the past decade, and novel molecular targets are urgently required to change this status. We previously conducted a microarray analysis to investigate the association of transcription factor activating enhancer-binding protein 2C (TFAP2C) with NSCLC and revealed its oncogenic roles in NSCLC development. In this study, to identify new biomarkers for NSCLC, we focused on several oncogenes from the microarray analysis that are transcriptionally regulated by TFAP2C. Here, the cell division cycle 20 (CDC20) and tribbles pseudokinase 3 (TRIB3) were subsequently found as potential potent oncogenes as they are positively regulated by TFAP2C. The results showed that the mRNA and protein levels of CDC20 and TRIB3 were down-regulated in two NSCLC cell lines (NCI-H292 and NCI-H838), which were treated with TFAP2C siRNA, and that the overexpression of either CDC20 or TRIB3 was responsible for promoting cell viability in both NSCLC cell lines. In addition, apoptotic levels of NCI-H292 and NCI-H838 cells treated with TFAP2C siRNA were found to be suppressed by the overexpression of either CDC20 or TRIB3. Together, these results suggest that CDC20 and TRIB3 are positively related to NSCLC tumorigenesis and that they should be considered as potential prognostic markers for developing an NSCLC therapy.

전세계적으로 폐암 발병율은 서서히 감소하는 추세이지만, 여전히 암 관련 사망의 주요 원인으로 지목되고 있으며, 이에 따라 폐암 진단과 치료를 위한 새로운 분자적 지표를 발굴하는 연구가 활발히 이루어지고 있다. 본 연구진이 수행한 기존 연구에 따르면 폐암 환자에게서는 전사인자 중 하나인 TFAP2C가 높은 비율로 발현되며, 이 전사인자를 통해 폐암 발달에 상당한 영향을 끼치는 것을 확인할 수 있었다. TFAP2C는 다른 유전자들의 발현을 조절하여 암 형성에 기여하게 된다. 마이크로어레이 분석을 통해 TFAP2C에 의해 발현양이 조절되는 잠재적 표적 유전자들을 확인하였고, 특히 TFAP2C siRNA를 처리하였을 때 발현이 감소되는 원암유전자들 중 CDC20과 TRIB3 유전자를 최종적으로 선별하였다. 리얼타임 qRT-PCR과 웨스턴블롯을 통하여 두 유전자가 TFAP2C에 의존적으로 발현됨을 확인하였으며, 세포 생존 분석법을 통하여 CDC20과 TRIB3의 발현 증가가 폐암세포의 세포 증식을 유의미하게 유도하는 것을 확인하였다. 이와 더불어, CDC20과 TRIB3의 과발현이 폐암세포의 세포사멸 수준을 감소시켜 폐암 형성에 관여함을 확인하였다. 본 연구를 통하여 CDC20과 TRIB3가 폐암 형성을 유도할 수 있는 잠재적인 원암유전자로 기능함을 밝힐 수 있었으며, 두 유전자가 폐암 진단을 위한 표적유전자로서의 역할을 수행할 수 있을 것으로 기대한다.

Keywords

SMGHBM_2019_v29n6_645_f0001.png 이미지

Fig. 1. Schematic of the microarray data (GSE79228)-based proc-ess used to identify TFAP2C-target genes that function as oncogenes.

SMGHBM_2019_v29n6_645_f0002.png 이미지

Fig. 2. TFAP2C knockdown down-regulated the expression levels of CDC20 and TRIB3 in NSCLC cells.

SMGHBM_2019_v29n6_645_f0003.png 이미지

Fig. 3. The oncogenic effects of CDC20 and TRIB3 on NSCLC cell proliferation.

SMGHBM_2019_v29n6_645_f0004.png 이미지

Fig. 4. The inhibitory effects of CDC20 and TRIB3 on NSCLC cell apoptosis.

Table 1. Primers for determining expression levels of TFAP2C, CDC20 and TRIB3

SMGHBM_2019_v29n6_645_t0001.png 이미지

Table 2. Oncogenes positively regulated by TFAP2C in NSCLC

SMGHBM_2019_v29n6_645_t0002.png 이미지

References

  1. Barbagallo, C., Brex, D., Caponnetto, A., Cirnigliaro, M., Scalia, M., Magnano, A., Caltabiano, R., Barbagallo, D., Biondi, A., Cappellani, A., Basile, F., Di Pietro, C., Purrello, M. and Ragusa, M. 2018. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol. Ther. Nucleic Acids 12, 229-241. https://doi.org/10.1016/j.omtn.2018.05.009
  2. De Andrade, J. P., Park, J. M., Gu, V. W., Woodfield, G. W., Kulak, M. V., Lorenzen, A. W., Wu, V. T., Van Dorin, S. E., Spanheimer, P. M. and Weigel, R. J. 2016. EGFR is regulated by TFAP2C in luminal breast cancer and is a target for Vandetanib. Mol. Cancer Ther. 15, 503-511. https://doi.org/10.1158/1535-7163.MCT-15-0548-T
  3. Dong, S., Xia, J., Wang, H., Sun, L., Wu, Z., Bin, J., Liao, Y., Li, N. and Liao, W. 2016. Overexpression of TRIB3 promotes angiogenesis in human gastric cancer. Oncol. Rep. 36, 2339-2348. https://doi.org/10.3892/or.2016.5017
  4. Hong, B., Zhou, J., Ma, K., Zhang, J., Xie, H., Zhang, K., Li, L., Cai, L., Zhang, N., Zhang, Z. and Gong, K. 2019. TRIB3 promotes the proliferation and invasion of renal cell carcinoma cells via activating MAPK signaling pathway. Int. J. Biol. Sci. 15, 587-597. https://doi.org/10.7150/ijbs.29737
  5. Kang, J., Kim, W., Lee, S., Kwon, D., Chun, J., Son, B., Kim, E., Lee, J. M., Youn, H. and Youn, B. 2017. TFAP2C promotes lung tumorigenesis and aggressiveness through miR-183- and miR-33a-mediated cell cycle regulation. Oncogene 36, 1585-1596. https://doi.org/10.1038/onc.2016.328
  6. Kang, J., Kim, W., Seo, H., Kim, E., Son, B., Lee, S., Park, G., Jo, S., Moon, C., Youn, H. and Youn, B. 2018. Radiation-induced overexpression of transthyretin inhibits retinol-mediated hippocampal neurogenesis. Sci. Rep. 8, 8394. https://doi.org/10.1038/s41598-018-26762-1
  7. Kangas, L., Gronroos, M. and Nieminen, A. L. 1984. Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro. Med. Biol. 62, 338-343.
  8. Kim, E., Kim, W., Lee, S., Chun, J., Kang, J., Park, G., Han, I., Yang, H. J., Youn, H. and Youn, B. 2017. TRAF4 promotes lung cancer aggressiveness by modulating tumor microenvironment in normal fibroblasts. Sci. Rep. 7, 8923. https://doi.org/10.1038/s41598-017-09447-z
  9. Kim, W., Kim, E., Lee, S., Kim, D., Chun, J., Park, K. H., Youn, H. and Youn, B. 2016. TFAP2C-mediated upregulation of TGFBR1 promotes lung tumorigenesis and epithelial-mesenchymal transition. Exp. Mol. Med. 48, e273. https://doi.org/10.1038/emm.2016.125
  10. Kim, W., Youn, H., Lee, S., Kim, E., Kim, D., Sub Lee, J., Lee, J. M. and Youn, B. 2018. RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp. Mol. Med. 50, e434. https://doi.org/10.1038/emm.2017.247
  11. Kolat, D., Kaluzinska, Z., Bednarek, A. K. and Pluciennik, E. 2019. The biological characteristics of transcription factors AP-2alpha and AP-2gamma and their importance in various types of cancers. Biosci. Rep. 39, pii: BSR20181928.
  12. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  13. Miyoshi, N., Ishii, H., Mimori, K., Takatsuno, Y., Kim, H., Hirose, H., Sekimoto, M., Doki, Y. and Mori, M. 2009. Abnormal expression of TRIB3 in colorectal cancer: a novel marker for prognosis. Br. J. Cancer 101, 1664-1670. https://doi.org/10.1038/sj.bjc.6605361
  14. Park, J. M., Wu, T., Cyr, A. R., Woodfield, G. W., De Andrade, J. P., Spanheimer, P. M., Li, T., Sugg, S. L., Lal, G., Domann, F. E., Zhang, W. and Weigel, R. J. 2015. The role of Tcfap2c in tumorigenesis and cancer growth in an activated Neu model of mammary carcinogenesis. Oncogene 34, 6105-6114. https://doi.org/10.1038/onc.2015.59
  15. Shang, G., Ma, X. and Lv, G. 2018. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle 17, 43-52. https://doi.org/10.1080/15384101.2017.1387700
  16. Siegel, R. L., Miller, K. D. and Jemal, A. 2019. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7-34. https://doi.org/10.3322/caac.21551
  17. Tiwari, M., Prasad, S., Tripathi, A., Pandey, A. N., Ali, I., Singh, A. K., Shrivastav, T. G. and Chaube, S. K. 2015. Apoptosis in mammalian oocytes: a review. Apoptosis 20, 1019-1025. https://doi.org/10.1007/s10495-015-1136-y
  18. Zhang, Y., Xue, Y. B., Li, H., Qiu, D., Wang, Z. W. and Tan, S. S. 2017. Inhibition of cell survival by curcumin is associated with downregulation of cell division cycle 20 (Cdc20) in pancreatic cancer cells. Nutrients 9, E109. https://doi.org/10.3390/nu9020109