• Title/Summary/Keyword: TRIAC-dimmer

Search Result 8, Processing Time 0.028 seconds

A Study on LED Driver Compatible with Triac-dimmer Employing Active Bleeder (능동 블리더 회로를 적용한 조광기 호환용 LED 구동회로에 관한 연구)

  • Yeom, Bong-Ho;Hong, Sung-Soo;Kim, Taek-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.297-302
    • /
    • 2014
  • In this paper, a LED driver compatible with TRIAC-dimmer applying active bleeder is proposed. If TRIAC-dimmer is connected with LED driver, flicker phenomenon occurs by TRIAC malfunction. In order to prevent this problem, a current over holding current must flow into TRIAC. Therefore, additional circuit compatible with TRIAC-dimmer is required to provide enough current. Passive bleeder has power loss in whole operation period. The proposed circuit apply a valley-fill circuit for power-factor-correction and a novel active bleeder detecting malfunction point of TRIAC. Therefore, it prevent malfunction of TRIAC-dimmer and have advantage of higher efficiency than passive bleeder. To verify the validity of proposed circuit, 13W-lighting LED driver prototype has been proposed.

Design of a TRIAC Dimmable LED Driver Chip with a Wide Tuning Range and Two-Stage Uniform Dimming

  • Chang, Changyuan;Li, Zhen;Li, Yuanye;Hong, Chao
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.640-650
    • /
    • 2018
  • A TRIAC dimmable LED driver with a wide tuning range and a two-stage uniform dimming scheme is proposed in this paper. To solve the restricted dimming range problem caused by the limited conduction ratio of TRIAC dimmers, a conduction ratio compensation technique is introduced, which can increase the output current up to the rated output current when the TRIAC dimmer turns to the maximum conduction ratio. For further optimization, a two-stage uniform dimming diagram with a rapid dimming curve and a slow dimming curve is designed to make the LED driver regulated visually uniform in the whole adjustable range of the TRIAC dimmer. The proposed control chip is fabricated in a TSMC $0.35{\mu}m$ 5V/650V CMOS/LDMOS process, and verified on a 21V/500mA circuit prototype. The test results show that, in the 90V/60Hz~132V/60Hz ac input range, the voltage linear regulation is 2.6%, the power factor is 99.5% and the efficiency is 83%. Moreover, in the dimming mode, the dimming rate is less than 1% when the maximum dimming current is 516mA and the minimum dimming current is only about 5mA.

Single-Stage Quasi Resonant Type PSR(Primary Side Regulation) PWM Converter for the LED Drive in TRIAC Phase Controlled Dimmer (TRIAC위상 제어 조광기에서의 LED구동을 위한 Single-Stage 준 공진형 PSR(Primary Side Regulation) PWM 컨버터)

  • Han, Jae-Hyun;Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.84-94
    • /
    • 2013
  • In case when the existing TRIAC phase controlled dimmer is drove for the LED lighting equipments, there are many problems such as the LED flicker in low phase-angles, the acoustic noise and elements damage by increase of the peak voltage in the input filter capacitor, mulfunction by insufficiency of the TRIAC holding current, and the abnormal oscillation by LC resonant. In this paper, we proposes the single-stage quasi-resonant PSR(Primary Side Regulation) PWM converter, and the design, the simulation and experiment are performed. As a result, it could confirm that the proposed PWM converter is the lighting equipments for LED drive which can alternate the existing 60W class incandescent bulbs and it has the high drive performance of the efficiency 80% and over, the power factor 0.95 and over under the normal voltage 220V. Finally, total harmonic distortion(THD) is gratified with a standard[1] of the lighting equipments and the durability is evaluated as the high reliablilty of 150,000 hours and over.

A Novel Switching Mode for High Power Factor Correction and Low THD

  • Park, Gyumin;Eum, Hyunchul;Yang, Seunguk;Hwang, Minha;Park, Inki
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.210-212
    • /
    • 2018
  • A new switching mode has been proposed to obtain high power factor and low THD in single stage AC-DC converter. The conventional voltage mode control in critical conduction mode distorts input current shape with poor THD in flyback topology. Once TRIAC dimmer is connected, visible flicker in the LED lamp is easily detected due to a lack of TRAIC holding current near the input voltage zero cross. The newly proposed method can shape the input current by providing a desired reference voltage so that low THD is obtained by ideal sinusoidal input current in case of no dimmer connection and flat input current performs good TRIAC dimmer compatibility in phase-cut dimming condition. To confirm the validity of the proposed method, theoretical analysis and experimental result from 8W dimmable LED lighting system are presented.

  • PDF

Primary Side Constant Power Control Scheme for LED Drivers Compatible with TRIAC Dimmers

  • Zhang, Junming;Jiang, Ting;Xu, Lianghui;Wu, Xinke
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.609-618
    • /
    • 2013
  • This paper proposes a primary side constant power control scheme for TRIAC dimmer compatible LED drivers. The LED driver is a Flyback converter operated in boundary conduction mode (BCM) to minimize the switching loss. With the proposed control scheme, the input power of the Flyback converter can be controlled by the TRIAC dimming angle, which is not affected by AC input voltage variations. Since the output voltage is almost constant for LED loads, the output current can be changed by controlling the input power with a given conversion efficiency. The isolated feedback circuit is eliminated with the proposed primary side control scheme, which dramatically simplifies the whole circuit. In addition, the input current automatically follows the input voltage due to the BCM operation, and the resistive input characteristic can be achieved which is attractive for TRIAC dimming applications. Experimental results from a 15W prototype verify the theoretical analysis.

A Study on the Single-Stage PSR(Primary Side Regulation) PWM Controller for LED Drive in TRIAC Phase Controlled Dimmer (TRIAC위상제어 조광기에서의 LED구동을 위한 Single-Stage PSR(Primary Side Regulation) PWM 컨버터에 관한 연구)

  • Han, Jae-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.564-565
    • /
    • 2012
  • 본 논문에서는 이미 설치되어 있는 TRIAC 위상제어 조광기에 LED조명장치를 적용할 경우 발생되는 낮은 위상 각에서의 LED플리커 현상, 입력 필터단 캐패시터의 피크 전압 상승으로 인한 부품 손상 및 소음 발생, TRIAC 유지전류 부족으로 인한 오동작 그리고 LC공진에 의한 비정상 오실레이션 등의 원인을 해결하기 위한 방안을 제시하였다. 그리고 이를 개선할 수 있는 Single Stage PSR PWM 컨버터를 설계하였으며 구현에 의하여 타당성을 입증하였다.

  • PDF

A Study on LED Driver Compatible with Triac-dimmer Employing Active Bleeder (능동 블리더 회로를 적용한 조광기 호환용 LED 구동회로에 관한 연구)

  • Yeom, Bong-Ho;Kim, Teak-Woo;Kim, Ju-Rae;Hong, Sung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.159-160
    • /
    • 2013
  • 본 논문에서는 백열등 조도 조절용 조광기에 호환 가능한 LED 구동회로를 제안한다. 조광기와 일반적인 LED 구동회로를 연결할 경우 트라이악(Triac)의 오동작에 의해 플리커(Flicker) 현상이 발생하는 문제점을 지니고 있다. 트라이악의 오동작을 방지하기 위해서는 트라이악에 일정 크기 이상의 전류가 인가되어야 하며 이를 만족하기 위한 조광기 호환회로가 필수적이다. 이러한 호환회로로써 수동 블리더(Passive Bleeder)는 전 동작 구간에서 전력소모가 발생하는 단점을 지니고 있다. 본 논문의 제안회로는 역률 만족을 위 해 Valley-fill 회로를 적용하였으며 트라이악의 오동작 시점을 정확히 검출하여 새로운 방식의 능동 블리더(Active Bleeder)를 적용함으로써 조광기의 오동작을 방지하면서 수동 블리더에 비해 효율이 개선되는 장점을 지닌다. 또한, Valley-fill과 인덕터를 적용한 1단 구성으로 효율개선 및 역률 개선의 장점과 입력 전류 리플의 감소로 인한 EMI 노이즈 저감 효과를 나타낸다. 본 논문에서는 제안된 회로의 타당성을 검증하기 위하여 13W급 조명용 LED 구동회로의 시작품 제작을 통해 그 우수성을 확인한다.

  • PDF

Design of a Two-Stage Driver for LED MR16 Retrofit Lamps Compatible with Electronic Transformers

  • Yim, Sungwon;Lee, Hyongmin;Lee, Bongjin;Kang, Kyucheol;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Drivers for LED MR16 retrofit lamps need to be compatible with the dimmers and electronic transformers which originally operated with the halogen lamps to be replaced. We present a two-stage MR16 LED driver consisting of a boost converter in the first stage and a buck converter in the second stage. Our design has been analyzed in the frequency domain using simulations to demonstrate that it effectively suppresses the high-frequency components of the AC output of the electronic transformer. Experiment results with a driver prototype verify the simulation results as well as dimmability.