• Title/Summary/Keyword: TREE GROWTH ASSESSMENT

Search Result 39, Processing Time 0.022 seconds

Planting Evaluations for the Landscaping Tree and Application Plan by Assessment Grade in the City Park - A Case Study of Haedoji Park, Songdo, Incheon Metropolitan City - (도시공원 조경수목 식재 평가 및 평가등급 적용 방안 - 인천광역시 송도 해돋이공원을 대상으로 -)

  • Han, Bong-Ho;Cho, Hun-Gum;Kwak, Jeong-In;Park, Seok-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.4
    • /
    • pp.457-471
    • /
    • 2014
  • This study aims to present an evaluation scheme to improve the problems in tree shapes and tree growth which were identified through shape and growth assessments of landscape trees currently planted in Haedoji Park, Songdo, Incheon Metropolitan City after plant structure status and propriety review for funtion of space and concept of planting. Suitability the planting concept was evaluated according to function of space. The result indicated that the shade planting areas accounted for 29.5% of the the shade spaces area. 58.7%, respectively planting areas of visual landscape. And 11.8%, respectively planting areas of buffer. Because the planting areas was lacked according to the park established spatial configuration of central facilities and the result of plant young trees. Plant structure status required consideration with plant structure, density, size, growth status for improve planting function. The tree assessment was performed on a total of 28 species and 600 trees of which 22 species and 209 trees were planted in the buffer zone, 8 species and 71 trees in the shade zone, 16 species and 266 trees in the visual landscape zone, and 4 species and 54 trees in the ecological landscape zone. The trees were divided into grades based on their assessment score and were statistically grouped by the functional zone in where they are planted and by tree species to verify their significance. The tree shape assessment was an average of 56.6 points and the tree growth assessment was an average of 76.0 points. Using the results of the tree assessments, the tree standards for each functional space were identified and a concept of optimum planting and cultivating was applied. When applying the shape assessment results by zone to the concept of planting, since trees for buffering require high functionality they received E's, the lowest grade; as trees for ecological landscaping require diverseness and naturalness, they received D's; since trees for shading require utilization, they received C's as trees with branching at the main stems were considered; and since trees for visual landscaping required aesthetical value, they received A's and B's. When applying the growth assessment results by zone to the concept of planting, based on planting foundations of favorable and poor, for buffering, visual landscaping, and ecological landscaping, trees from grades A to E could be planted, and for shading, trees from grades A to C could be planted. For a cultivation plan that could improve the growth of the trees, we proposed that the topography of the land be selected considering the tree's characteristics and that a method of pot seeding be used. Also, to improve the shape of the trees, we proposed that poles be used to improve the growth of vertically-straight stems, an appropriate planting density be applied for reasonable branch growth, manage tree shape to maintain good crowning, and better manage fertilization to maintain a reasonable crown density.

Soil Environment's Impact on the Growth of Pinus thunbergii by Season in Urban Forests (도시림의 계절별 토양환경이 곰솔의 생육에 미치는 영향)

  • Kim, Seok-Kyu
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.455-464
    • /
    • 2011
  • The purpose of this study is to clarify correlations between soil environments and the growth of trees in forests and thereon analyze effects of seasonal changes in such environments on such growth. To determine seasonal factors of soil affecting the Tree Vitality of Pinus thunbergii, first of all, the study designated the Tree Vitality as a dependent variable and soil hardness, moisture, pH, K, Na, Mg and Ca as independent variables. Then the study performed Pearson's coefficient analysis. To clarify what soil factors influence the seasonal growth of Pinus thunbergii multiple regression analysis is carried out, and findings are as follow; the growth of Pinus thunbergii was basically influenced by pH, followed by soil hardness in spring, K, followed by moisture in summer, and by soil hardness in winter. However, no soil factors affected the vitality at the significance level of 5% for t.

Analysis of the Individual Tree Growth for Urban Forest using Multi-temporal airborne LiDAR dataset (다중시기 항공 LiDAR를 활용한 도시림 개체목 수고생장분석)

  • Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Choi, Young-Eun;Choi, Jae-Yong;Moon, Guen-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • It is important to measure the height of trees as an essential element for assessing the forest health in urban areas. Therefore, an automated method that can measure the height of individual tree as a three-dimensional forest information is needed in an extensive and dense forest. Since airborne LiDAR dataset is easy to analyze the tree height(z-coordinate) of forests, studies on individual tree height measurement could be performed as an assessment forest health. Especially in urban forests, that adversely affected by habitat fragmentation and isolation. So this study was analyzed to measure the height of individual trees for assessing the urban forests health, Furthermore to identify environmental factors that affect forest growth. The survey was conducted in the Mt. Bongseo located in Seobuk-gu. Cheonan-si(Middle Chungcheong Province). We segment the individual trees on coniferous by automatic method using the airborne LiDAR dataset of the two periods (year of 2016 and 2017) and to find out individual tree growth. Segmentation of individual trees was performed by using the watershed algorithm and the local maximum, and the tree growth was determined by the difference of the tree height according to the two periods. After we clarify the relationship between the environmental factors affecting the tree growth. The tree growth of Mt. Bongseo was about 20cm for a year, and it was analyzed to be lower than 23.9cm/year of the growth of the dominant species, Pinus rigida. This may have an adverse effect on the growth of isolated urban forests. It also determined different trees growth according to age, diameter and density class in the stock map, effective soil depth and drainage grade in the soil map. There was a statistically significant positive correlation between the distance to the road and the solar radiation as an environmental factor affecting the tree growth. Since there is less correlation, it is necessary to determine other influencing factors affecting tree growth in urban forests besides anthropogenic influences. This study is the first data for the analysis of segmentation and the growth of the individual tree, and it can be used as a scientific data of the urban forest health assessment and management.

A Case Study of Risk Assessment of Ozone Impact on Forest Tree Species in Japan

  • Watanabe, Makoto;Yamaguchi, Masahiro;Matsumura, Hideyuki;Kohno, Yoshihisa;Koike, Takayoshi;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.205-215
    • /
    • 2011
  • Ozone ($O_3$) is a main component of photochemical oxidants and a phytotoxic air pollutant. Although the current levels of tropospheric $O_3$ in East Asia could adversely affect productivity of forest tree species, risk assessments of $O_3$ impact were limited. In this paper, we summarize the methodology of risk assessment of $O_3$ on forest tree species based on our two previous studies, risk assessments of $O_3$ impact on the growth of Fagus crenata by Watanabe et al. (2012) and on the annual carbon absorption of three representative conifers, Cryptomeria japonica, Pinus densiflora and Larix kaempferi by Watanabe et al. (2010). $O_3$ sensitivity of each tree species obtained from an experimental study, $O_3$ exposure and atmospheric N deposition based on field monitoring and vegetation survey were integrated by geographic information system method. Based on the results, we conclude that the area with high risk of $O_3$ impact does not necessarily correspond to the area with high $O_3$ exposure. The varieties of tree habitat, tree sensitivity to $O_3$ and annual carbon absorption among the tree species, and N deposition-induced change in the $O_3$ sensitivity of F. crenata are raised as the factors of discordance between areas with high risk and those with high $O_3$ exposure. In the last part of this paper, we discuss the present uncertainty and perspectives of risk assessment for the future studies on the impact of $O_3$ on forest tree species in East Asia.

Indicators for the Quantitative Assessment of Tree Vigor Condition and Its Theoretical Implications : A Case Study of Japanese Flowering-cherry Trees in Urban Park (도시공원에 식재된 왕벚나무 수종을 중심으로 한 수목활력도의 정량평가지표 개발 및 이론적 고찰에 관한 연구)

  • Song, Youngkeun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.57-67
    • /
    • 2014
  • The vigor condition of trees is an important indicator for the management of urban forested area. But difficulties in how to assess the tree vigor condition still remain. Previous efforts were limited in the 1) measurement of single indicator rather than using multiple indices, 2) purpose-oriented measurement such as for air-pollution effect or specific pathological symptom, and 3) ordinal-scale evaluations by field crews 4) despite human errors based on his/her experiences or prior knowledge. Therefore, this study attempted to develop a quantitative and objective methodology for assessing tree vigor condition, by measuring multiple modules and building the profile inventory. Furthermore, the possibility and limitations were discussed in terms of schematic frames describing tree vigor condition. The vigor condition of 56 flowering cherry plants in urban park were assessed by in-situ measurements of following eight items; growth of crown(Gc), growth of shoots, individual tree volume(Vol), plant area index, woody area index, leaf area index, leaf chlorophyll content(Lc) and leaf water content(Lw). For validation, these measurements were compared with the ranks of holistic tree vigor condition, which were visually assessed using a 4-point grading scale based on the expert's knowledge. As a result, the measures of each evaluation item successfully highlighted a variety of aspects in tree vigor condition, including the states of both photosynthetic and non-photosynthetic parts. The variation in the results depending on evaluated parts was shown within an individual tree, even though the broad agreement among the results was found. The result of correlation analysis between the tested measurements and 4-point visual assessment, demonstrated that the state of water-stressed foliage of the season (Lw) or the development of plant materials since sapling phase (Vol) could be better viewed from the outer appearance of trees than other symptoms. But only based on the visual assessment, it may be difficult to detect the quality of photosynthesis (Lc) or the recent trend in growth of trees (Gc). To make this methodology simplified for the broad-scale application, the tested eight measurements could be integrated into two components by principal component analysis, which was labelled with 'the amount of plant materials' and 'vigor trend', respectively. In addition, the use of these quantitative and multi-scale indicators underlies the importance of assessing various aspects of tree vigor condition, taking into account the response(s) on different time and spatial scale of pressure(s) shown in each evaluated module. Future study should be advanced for various species at diverse developing stages and environment, and the application to wide areas at a periodic manner.

Experimental Studies on the Effects of Ozone on Growth and Photosynthetic Activity of Japanese Forest Tree Species

  • Yamaguchi, Masahiro;Watanabe, Makoto;Matsumura, Hideyuki;Kohno, Yoshihisa;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.65-78
    • /
    • 2011
  • Ozone ($O_3$) is a main component of photochemical oxidants, and a phytotoxic anthropogenic air pollutant. In North America and Europe, the current concentration of $O_3$ has been shown to have significant adverse effects on vegetation. In this review, we summarize the experimental studies on the effects of $O_3$ on the growth and photosynthetic activity of Japanese forest tree species to understand the present knowledge and provide sound basis for future research toward the assessment of $O_3$ impacts on Japanese forest ecosystem. Since the 1990s, several Japanese researchers have conducted the experimental studies on the effects of ambient levels of $O_3$ on growth and physiological functions such as net photosynthesis of Japanese forest tree species. Although the sensitivity to $O_3$ of whole-plant growth is quite different among the species, it was suggested that the current ambient levels of $O_3$ in Japan are high enough to adversely affect growth and photosynthetic activity of Japanese forest tree species classified into high $O_3$ sensitivity group such as Japanese beech. The N load to soil has been shown to reduce the sensitivity to $O_3$ of Japanese larch and increase that of Japanese beech. To establish the critical level of $O_3$ for protecting Japanese forest tree species, therefore, it is necessary to take into account the N deposition from the atmosphere. There is little information on the combined effects of $O_3$ and other environmental factors such as elevated $CO_2$ and drought on growth and physiological functions of Japanese forest tree species. Therefore, it is necessary to promote the experimental study and accumulate the information on the combined effects of $O_3$ and any other abiotic environmental factors on Japanese forest tree species.

Crown Ratio Models for Tectona grandis (Linn. f) Stands in Osho Forest Reserve, Oyo State, Nigeria

  • Popoola, F.S.;Adesoye, P.O.
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.2
    • /
    • pp.63-67
    • /
    • 2012
  • Crown ratio is the ratio of live crown length to tree height. It is often used as an important predictor variable for tree growth equation. It indicates tree vigor and is a useful parameter in forest health assessment. The objective of the study was to develop crown ratio prediction models for Tectona grandis. Based on the data set from the temporary sample plots, several non linear equations including logistics, Chapman Richard and exponential functions were tested. These functions were evaluated in terms of coefficient of determination ($R^2$) and standard error of the estimate (SEE). The significance of the estimated parameters was also verified. Plot of residuals against estimated crown ratios were observed. Although the logistic model had the highest $R^2$ and the least SEE, Chapman-Richard and Exponential functions were observed to be more consistent in their predictive ability; and were therefore recommended for predicting crown ratio in the stand.

The Effects of Teatree Oil Gargling on Oral Cavity Micro-Organism Growth and Perceived Discomfort of Patient Receiving Chemotherapy (티트리 오일을 이용한 구강함수가 화학요법을 받는 암 환자의 구강상태와 불편감 및 구강세균집락에 미치는 효과)

  • Kim, Nam Cho;Kim, Hee Jung
    • Korean Journal of Adult Nursing
    • /
    • v.17 no.2
    • /
    • pp.276-286
    • /
    • 2005
  • Purpose: The study is to investigate the effects of tea tree oil gargling on oral cavity micro-organism growth and on the perceived discomfort of patients receiving chemotherapy. Methods: A nonequivalent control group non-synchronized design was used to determine the effects of tea tree oil gargling on oral cavity for 20 second after using it for one week, twice a day. The sample consisted of two groups of patients receiving chemotherapy : 19 patients in experimental and 20 patients in control group. The instruments used in the study were Oral Assessment Guide(OAG), a measure of perceived symptoms on oral cavity, and a test of oral mucosal micro-organism culture. The data were analyzed using chi-square test, repeated measure of ANOVA, and Pearson correlation coefficient. Results: There was no significant difference between the two groups in micro-organism culture test of oral mucosa. The experimental group showed a lower number and fewer kinds of micro-organisms than the control group. Conclusion: It is considered that use of tea tree oil is effective in infection control of the oral cavity.

  • PDF

An Analysis of Permanantly Shaded Areas and the Defect Rate of Landscape Trees in Apartment Complexes Using Daylight Simulations

  • Park, Sang Wook
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.3
    • /
    • pp.333-345
    • /
    • 2020
  • Background and objective: The purpose of this study was to provide basic data on trees that can be used for planting design and construction for permanently shaded areas by grasping the growth status of trees according to the daylight conditions of the outdoor spaces of apartment complexes. Methods: On the recently completed apartment complexes, daylight conditions were analyzed by using daylight simulations utilizing Solar Access Analysis of Ecotect Analysis. With a criteria for assessment of tree condition, the defect rate of trees planted in permanently shaded areas and green spaces with good daylight conditions was analyzed to suggest trees applicable to permanently shaded areas. The first tree survey was conducted from November 18, 2019 to February 15, 2020, focusing on trees planted in permanently shaded areas, and the second tree survey of all the trees planted on the study sites including permanently shaded areas was conducted from March 16 to March 30, 2020. Results: Evergreen trees which are classified as shade intolerant trees including Pinus densiflora, Thuja occidentalis, and Abies holophylla showed a higher defect rate of trees among the trees planted in permanently shaded areas. Taxus cuspidata, Zelkova serrata, Cornus kousa, Chionanthus retusus and Acer palmatum which are classified as shade tolerant trees and shade moderate tolerance trees seemed to be able to be used in the plant design of permanently shaded areas in apartment complexes because the trees showed good growth and a low tree defect rate. In addition, although it was excluded from the analysis due to a small number of samples, Sorbus commixta and Prunus cerasifera var. atropurpurea also can be used for planting in permanently shaded areas. Conclusion: The daylight simulation technique used to analyze permanent shaded areas in this study can be used as an analysis tool considering the daylight environment at the stages of design and construction, and additional research will be required to analyze tree growth according to daylight conditions through data accumulation and monitoring by managing records throughout the entire life cycle of trees in the process of planting and maintenance.

Assessment of Carbon Storage Capacity of Stands in Abandoned Coal Mine Forest Rehabilitation Areas over time for its Development of Management Strategy (폐탄광 산림복구지 관리방안 도출을 위한 산림복구 후 시간경과에 따른 임분탄소저장량 평가)

  • Mun Ho Jung;Kwan In Park;Ji Hye Kim;Won Hyun Ji
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • The objective of this study was to develop a management strategy for the recovery of carbon storage capacity of abandoned coal mine forest rehabilitation area. For the purpose, the biomass and stand carbon storage over time after the forest rehabilitation by tree type for Betula platyphylla, Pinus densiflora, and Alnus hirsuta trees which are major tree species widely planted for the forest rehabilitation in the abandoned coal mine were calculated, and compared them with general forest. The carbon storage in abandoned coal mine forest rehabilitation areas was lower than that in general forests, and based on tree species, Pinus densiflora stored 48.9%, Alnus hirsuta 41.1%, and Betula platyphylla 27.0%. This low carbon storage is thought to be caused by poor growth because soil chemical properties, such as low TOC and total nitrogen content, in the soil of abandoned coal mine forest rehabilitation areas, were adverse to vegetation growth compared to those in general forests. DBH, stand biomass, and stand carbon storage tended to increase after forest rehabilitation over time, whereas stand density decreased. Stand' biomass and carbon storage increased as DBH and stand density increased, but there was a negative correlation between stand density and DBH. Therefore, after forest rehabilitation, growth status should be monitored, an appropriate growth space for trees should be maintained by thinning and pruning, and the soil chemical properties such as fertilization must be managed. It is expected that the carbon storage capacity the forest rehabilitation area could be restored to a level similar to that of general forests.