• 제목/요약/키워드: TRAF4

검색결과 25건 처리시간 0.022초

돼지에서 TRAF4 유전자 특성 및 Tight junction 관련 기능 분석 (Characterization of TRAF4 mRNA and Functions related to tight junction in pig)

  • 윤정희;황인설;황성수;박미령
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.216-222
    • /
    • 2020
  • Tumor necrosis factor receptor associated factor 4 (TRAF4)는 사람의 유방암에서 과발현 되며, 암세포전이, ROS 및 세포 극성 형성 등에 관여하는 것으로 알려져 있다. 그러나 돼지에서는 아직까지 그 기능과 특성에 대한 연구가 보고 된 바 없다. 따라서 본 연구에서는 돼지 TRAF4의 mRNA 전장서열을 분석하고, 그 기능과 특성을 알아보고자 수행되었다. TRAF4의 전장서열을 밝히기 위해 돼지 신장유래세포(pK15)에서 total RNA 추출하여 RACE (Rapid Amplification of cDNA ends) PCR을 수행하였다. 2,030 염기쌍의 mRNA 전장서열을 분석하였고, 470개의 아미노산으로 구성 되어 있는 것을 확인하였다. 사람과 쥐의 Homology를 분석한 결과 각각 93 % 그리고 90 %의 유사도를 가지며, 사람과는 8개, 쥐와는 12개의 아미노산 차이가 있음을 확인하였다. qPCR을 통하여 TRAF4, CLDN4, OCLN 그리고 TJP1의 발현을 분석한 결과 세포의 confluency 정도에 따라 발현이 다르게 나타남을 확인하였고, 세포가 40% 증식한 그룹 보다 60 %와 80 % 이상 증식 한 그룹에서 유의적으로 높게 나타났다. 또한 TRAF4의 기능을 확인하기 위하여 TRAF4 siRNA 처리 한 결과 TRAF4와 tight junction 관련 유전자가 낮게 발현됨을 관찰하였다. 따라서 사람과 마우스와 같이 돼지에서도 TRAF4가 발현되며, 세포-세포 간 중요한 역할을 하는 tight junction에 관여하는 것으로 사료된다.

Traf4 is required for tight junction complex during mouse blastocyst formation

  • Lee, Jian;Choi, Inchul
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.307-313
    • /
    • 2021
  • Traf4 (Tumor necrosis factor Receptor Associated Factor 4) is a member of the tumor necrosis factor receptor (TNFR) - associated factors (TRAFs) family. TRAF4 is overexpressed in tumor cells such as breast cancer and associated with cytoskeleton and membrane fraction. Interestingly, TRAF4 was localized with tight junctions (TJs) proteins including OCLN and TJP1 in mammary epithelial cells. However, the expression patterns and biological function of Traf4 were not examined in preimplantation mouse embryos although Traf4-deficient mouse showed embryonic lethality or various dramatic malformation. In this study, we examined the temporal and spatial expression patterns of mouse Traf4 during preimplantation development by qRT-PCR and immunostaining, and its biological function by using siRNA injection. We found upregulation of Traf4 from the 8-cell stage onwards and apical region of cell - cell contact sites at morula and blastocyst embryos. Moreover, Traf4 knockdown led to defective TJs without alteration of genes associated with TJ assembly but elevated p21 expression at the KD morula. Taken together, Traf4 is required for TJs assembly and cell proliferation during morula to blastocyst transition.

Differential Signaling via Tumor Necrosis Factor-Associated Factors (TRAFs) by CD27 and CD40 in Mouse B Cells

  • Woo, So-Youn;Park, Hae-Kyung;Bishop, Gail A.
    • IMMUNE NETWORK
    • /
    • 제4권3호
    • /
    • pp.143-154
    • /
    • 2004
  • Background: CD27 is recently known as a memory B cell marker and is mainly expressed in activated T cells, some B cell population and NK cells. CD27 is a member of tumor necrosis factor receptor family. Like CD40 molecule, CD27 has (P/S/T/A) X(Q/E)E motif for interacting with TNF receptor-associated factors (TRAFs), and TRAF2 and TRAF5 bindings to CD27 in 293T cells were reported. Methods: To investigate the CD27 signaling effect in B cells, human CD40 extracellular domain containing mouse CD27 cytoplamic domain construct (hCD40-mCD27) was transfected into mouse B cell line CH12.LX and M12.4.1. Results: Through the stimulation of hCD40-mCD27 molecule via anti-human CD40 antibody or CD154 ligation, expression of CD11a, CD23, CD54, CD70 and CD80 were increased and secretion of IgM was induced, which were comparable to the effect of CD40 stimulation. TRAF2 and TRAF3 were recruited into lipid-enriched membrane raft and were bound to CD27 in M12.4.1 cells. CD27 stimulation, however, did not increase TRAF2 or TRAF3 degradation. Conclusion: In contrast to CD40 signaling pathway, TRAF2 and TRAF3 degradation was not observed after CD27 stimulation and it might contribute to prolonged B cell activation through CD27 signaling.

TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB

  • Lee, Soo-Woong;Han, Sang-In;Kim, Hong-Hee;Lee, Zang-Hee
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.371-376
    • /
    • 2002
  • The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiaion, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-${\kappa}B$ and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is and initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-$\beta$-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-${\kappa}B$ and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant-negative TAK1. the inhibitory effect of the TAK1 mutant on RANK-and TRAF-induced NF-${\kappa}B$ activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-${\kappa}B$ pathway that is activated by RANK.

6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation

  • Xian Zhou;Ahmad Al-Khazaleh;Sualiha Afzal;Ming-Hui (Tim) Kao;Gerald Munch;Hans Wohlmuth;David Leach;Mitchell Low;Chun Guang Li
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.27-39
    • /
    • 2023
  • Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokine-suppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-γ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaolcurcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.

ZAS3 promotes TNFα-induced apoptosis by blocking NFκB-activated expression of the anti-apoptotic genes TRAF1 and TRAF2

  • Shin, Dong-Hyeon;Park, Kye-Won;Wu, Lai-Chu;Hong, Joung-Woo
    • BMB Reports
    • /
    • 제44권4호
    • /
    • pp.267-272
    • /
    • 2011
  • ZAS3 is a large zinc finger transcription repressor that binds the ${\kappa}B$-motif via two signature domains of ZASN and ZASC. A loss-of-function study showed that lack of ZAS3 protein induced accelerated cell proliferation and tumorigenesis. Conversely, gain-of-function studies showed that ZAS3 repressed $NF{\kappa}B$-activated transcription by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. Based on these observations, we hypothesize that ZAS3 promotes apoptosis by interrupting anti-apoptotic activity of $NF{\kappa}B$. Here, we present evidence that upon $TNF{\alpha}$ stimulation, ZAS3 inhibits $NF{\kappa}B$-mediated cell survival and promotes caspase-mediated apoptosis. The inhibitory effect of ZAS3 on $NF{\kappa}B$ activity is mediated by neither direct association with $NF{\kappa}B$ nor disrupting nuclear localization of $NF{\kappa}B$. Instead, ZAS3 repressed the expression of two key anti-apoptotic genes of $NF{\kappa}B$, TRAF1 and TRAF2, thereby sensitizing cells to $TNF{\alpha}$-induced cell death. Taken together, our data suggest that ZAS3 is a tumor suppressor gene and therefore serves as a novel therapeutic target for developing anti-cancer drugs.

Hepatitis B virus X Protein Promotes Liver Cancer Progression through Autophagy Induction in Response to TLR4 Stimulation

  • Juhee Son;Mi-Jeong Kim;Ji Su Lee;Ji Young Kim;Eunyoung Chun;Ki-Young Lee
    • IMMUNE NETWORK
    • /
    • 제21권5호
    • /
    • pp.37.1-37.17
    • /
    • 2021
  • Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.

Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

  • Lee, Yun-Jung;Won, Tae Joon;Hyung, Kyeong Eun;Lee, Mi Ji;Moon, Young-Hye;Lee, Ik Hee;Go, Byung Sung;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권1호
    • /
    • pp.73-78
    • /
    • 2014
  • Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-2 expression in Jurkat T cells, and this increased TCR-triggered AICD and enhanced TNFR gene expression. Also, knockdown of Bcl-2 in Jurkat T cells suppressed the gene expression of FLIP, TNF receptor-associated factors 3 (TRAF3) and TRAF4. Furthermore, suppressed Bcl-2 expression increased caspase-3 and diminished nuclear factor kappa B (NF-${\kappa}B$) translocation.

병풀(Centella asiatica) 및 아시아티코사이드는 미토콘드리아 호흡 및 TLR4 경로를 통해 H2O2 유도 세포염증 조절 (Centella asiatica and Asiaticoside Regulate H2O2-induced Cellular Inflammation via Mitochondrial Respiration and the TLR4 Pathway)

  • 지주리;남영선;강상모
    • 생명과학회지
    • /
    • 제31권4호
    • /
    • pp.389-399
    • /
    • 2021
  • 이 연구는 인간진피섬유아(HDF)세포에서 병풀 및 아시아티코사이드가 H2O2 유래 세포주기 정지기, 미토콘드리아 활성 및 염증성 사이토카인에 미치는 영향을 조사하였다. 병풀 80% 메탄올 추출물, 에틸아세티이트 분획물 및 병풀의 대표물질인 아시아티코사이드를 사용하였다. 병풀 추추물, 에틸아세테이트 분획 및 아시아티코사이드로 처리한 세포는 낮은 수준의 TNF-α 및 IL-6을 분비하였고, 아시아티코사이드의 항산화 효과는 병풀 추출물 및 에틸아세테이트 분획물보다 높았다. 아시아티코사이드 처리는 미토콘드리아의 막포텐셜을 증가시키고, 미토콘드리아를 정상으로 되돌렸다. 스트레스 유도 후 에틸아세테이트 분획물 및 아시아티코사이드에 의해 미토콘드리아 산소 소비율이 증가하였고, TLR4-MyD88-TRAF6-p65 경로가 재감소하였다. 이러한 결과는 병풀 추출물, 에틸 아세테이트 분획 및 아시아티코사이드가 HDF 세포의 미토콘드리아 활성을 조절할 뿐 아니라 항산화 및 항염증에 효과 있음을 시사한다.

발아현미가 LPS로 유도된 지방세포의 염증반응에 미치는 영향 (Effect of Germinated Brown Rice on LPS-Induced Inflammation in Adipocytes)

  • 박미영
    • 한국식생활문화학회지
    • /
    • 제33권4호
    • /
    • pp.337-344
    • /
    • 2018
  • Germinated brown rice (GBR, Orysa sartiva L.) has been reported to have anti-obesity and anti-inflammatory effects. However, the mechanisms underlying these effects in adipocytes are not fully understood. Therefore, this study was conducted to explore the anti-inflammatory mechanisms of GBR on lipopolysaccharide (LPS)-stimulated 3T3-L1 adipocytes. 3T3-L1 adipocytes were pretreated with GBR extracts (0-20 mg/mL) 1 h before LPS stimulation. The mRNA expression of adipokines and Toll-like receptor 4 (TLR4) were measured by RT-PCR. The protein expressions of TLR4-related molecules were detected by western blotting and nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) activation was measured. Our results showed that GBR extract dose-dependently inhibited mRNA expression of LPS-induced tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). GBR extract was found to inhibit LPS-induced mRNA expression of TLR4 and protein expression of both myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factor 6 (TRAF6). Furthermore, GBR extract significantly inhibited extracellular receptor-activated kinase (ERK) phosphorylation and $NF-{\kappa}B$ activation. These results suggest that GBR extract has the anti-inflammatory effects on LPS-induced inflammation via inhibition of TLR4 signaling, includingthe ERK and $NF-{\kappa}B$ signaling pathways, in adipocytes.