• Title/Summary/Keyword: TRACKING SEASON

Search Result 36, Processing Time 0.028 seconds

Characteristics of Summer Season Precipitation Motion over Jeju Island Region Using Variational Echo Tracking (변분에코추적법을 이용한 제주도 지역 여름철 강수계의 이동 특성 분석)

  • Kim, Kwonil;Lee, Ho-Woo;Jung, Sung-Hwa;Lyu, Geunsu;Lee, GyuWon
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.443-455
    • /
    • 2018
  • Nowcasting algorithms using weather radar data are mostly based on extrapolating the radar echoes. We estimate the echo motion vectors that are used to extrapolate the echo properly. Therefore, understanding the general characteristics of these motion vectors is important to improve the performance of nowcasting. General characteristics of radar-based motions are analyzed for warm season precipitation over Jeju region. Three-year summer season data (June~August, 2011~2013) from two radars (GSN, SSP) in Jeju are used to obtain echo motion vectors that are retrieved by Variational Echo Tracking (VET) method which is widely used in nowcasting. The highest frequency occurs in precipitation motion toward east-northeast with the speed of $15{\sim}16m\;s^{-1}$ during the warm season. Precipitation system moves faster and eastward in June-July while it moves slower and northeastward in August. The maximum frequency of speed appears in $10{\sim}20m\;s^{-1}$ and $5{\sim}10m\;s^{-1}$ in June~July and August respectively while average speed is about $14{\sim}15m\;s^{-1}$ in June~July and $8m\;s^{-1}$ in August. In addition, the direction of precipitation motion is highly variable in time in August. The speed of motion in Lee side of the island is smaller than that of the windward side.

Home range study of the Korean water deer (Hydropotes inermis agyropus) using radio and GPS tracking in South Korea: comparison of daily and seasonal habitat use pattern

  • Kim, Baek-Jun;Lee, Sang-Don
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.365-370
    • /
    • 2011
  • The water deer (Hydropotes inermis) is one of the most primitive extant deer of the family Cervidae. Unlike Chinese water deer, Korean water deer have rarely been studied, even though they have relatively well remained in Korea. In particular, the home range of the Korean water deer has not yet been studied. Here we estimated the home range of the Korean water deer using two different methods (GPS and radio tracking) and analyzed the home range according to sex, time, and season. The mean home range size of four individuals was 2.77 $km^2$ and 0.34 $km^2$ under the 95% minimum convex polygon (MCP) and the 50% kernel (K) method, respectively. There seemed to be a difference in home range size between males (3.30 $km^2$) and females (2.25 $km^2$) under the 95% MCP method. We also found a difference in home range size between day (1.90 $km^2$) and night (2.43 $km^2$) by 95% MCP method. In addition, a home range size difference was observed between summer (4.65 $km^2$) and spring (0.48 $km^2$) or fall (0.85 $km^2$) using the 95% MCP method. Water deer seemed to have a larger home range in night than in day, and males also have a larger home range. We presumed that the GPS tracking method of the code division multiple access system could be a very useful tool for understanding the ecology of the water deer using the radio tracking method. Using these tracking methods and through future research, we can better understand the habitat use pattern of these water deer.

Analysis of Sun Tracking Error Caused by the Heliostat Driving Axis Geometrical Error Utilizing the Solar Ray Tracing Technique (태양광선 제적추적기법을 이용한 Heliostat 구동축 기구오차에서 기인하는 태양추적오차의 분석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • Heliostat, as a mirror system tracking the sun's movement, is the most important subsystem determining the efficiency of solar thermal power plant. Thus the accurate sun tracking performance under the various hazardous operating condition, is required. This study presents a methodology of development of the solar ray tracing technique and the application of it in the analysis of sun tracking error due to the heliostat geometrical errors. The geometrical errors considered here are the azimuth axis tilting error and the elevation axis tilting error. We first analyze the geometry of solar ray reflected from the heliostat. Then the point on the receiver, where the solar ray reflected from the heliostat is landed, is computed and compared with the original intended point, which represents the sun tracking error. The result obtained shows that the effect of geometrical error on the sun tracking performance is varying with time(season) and the heliostat location. It also shows that the heliostat located near the solar tower has larger sun tracking error than that of the heliostat located farther.

Development of a sequence-characterized amplified region (SCAR) marker for female off-season flowering detection in date palm (Phoenix dactylifera L.)

  • Lalita Kethirun;Puangpaka Umpunjun;Ngarmnij Chuenboonngarm;Unchera Viboonjun
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.190-199
    • /
    • 2023
  • Date palm (Phoenix dactylifera L.: Arecaceae) is a dioecious species where only female trees bear fruits. In their natural state, date palms produce dates once a year. However, in Thailand, some trees were observed to produce dates during the off-season, despite no variations in morphology. The availability of such off-season fruits can significantly increase their market value. Interestingly, most female off-season date palms investigated in this study were obtained through micropropagation. Hence, there is an urgent need for genetic markers to distinguish female offseason flowering plantlets within tissue culture systems. In this study, we aimed to develop random amplification of polymorphic DNA-sequence characterized amplified region (RAPD-SCAR) markers for the identification of female off-season flowering date palms cultivated in Thailand. A total of 160 random decamer primers were employed to screen for specific RAPD markers in off-season flowering male and female populations. Out of these, only one primer, OPN-02, generated distinct genomic DNA patterns in female off-season flowering (FOFdp) individuals compared to female seasonal flowering genotypes. Based on the RAPD-specific sequence, specific SCAR primers denoted as FOFdpF and FOFdpR were developed. These SCAR primers amplified a single 517-bp DNA fragment, predominantly found in off-season flowering populations, with an accuracy rate of 60%. These findings underscore the potential of SCAR marker technology for tracking offseason flowering in date palms. Notably, a BLAST analysis revealed a substantial similarity between the SCAR marker sequence and the transcript variant mRNA from Phoenix dactylifera encoding the SET DOMAIN GROUP 40 protein. In Arabidopsis, this protein is involved in the epigenetic regulation of flowering time. The genetic potential of the off-season flowering traits warrants further elucidation.

Development of Convective Cell Identification and Tracking Algorithm using 3-Dimensional Radar Reflectivity Fields (3차원 레이더 반사도를 이용한 대류세포 판별과 추적 알고리즘의 개발)

  • Jung, Sung-Hwa;Lee, GyuWon;Kim, Hyung-Woo;Kuk, BongJae
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.243-256
    • /
    • 2011
  • This paper presents the development of new algorithm for identifying and tracking the convective cells in three dimensional reflectivity fields in Cartesian coordinates. First, the radar volume data in spherical coordinate system has been converted into Cartesian coordinate system by the bilinear interpolation. The three-dimensional convective cell has then been identified as a group of spatially consecutive grid points using reflectivity and volume thresholds. The tracking algorithm utilizes a fuzzy logic with four membership functions and their weights. The four fuzzy parameters of speed, area change ratio, reflectivity change ratio, and axis transformation ratio have been newly defined. In order to make their membership functions, the normalized frequency distributions are calculated using the pairs of manually matched cells in the consecutive radar reflectivity fields. The algorithms have been verified for two convective events in summer season. Results show that the algorithms have properly identified storm cells and tracked the same cells successively. The developed algorithms may provide useful short-term forecasting or nowcasting capability of convective storm cells and provide the statistical characteristics of severe weather.

A Study On Novel MPPT Method Using Averaging of Voltage Ripple

  • Choi Hae-Ryong;Gho Jae-Surk;Choe Gyu-Ha;Kim Heung-Geun;Shin Woo-Surk
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.692-697
    • /
    • 2001
  • Of two photovoltaic systems such as stand-alone type and utility interactive one, the utility interactive systems are so valuable for power peak-cut particularly in summer season. For the maximum power point tracking(MPPT) by which the generating energy can be maximized, many control methods have been reported up to now. To overcome the disadvantages of the conventional ones, a new MPPT algorithm is proposed which can improve both tracking ability and generating efficiency of photo voltaic system without chopper.

  • PDF

A Study On Novel MPPT Method Using Averaging of Voltage Ripple (전압리플 평균화를 이용한 새로운 MPPT 기법에 관한 연구)

  • Choi Hae-Ryong;Gho Jae-Seok;Choe Gyu-Ha;Kim Heung-Geun;Shin Woo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.177-182
    • /
    • 2001
  • Of two photovoltaic systems such as stand-alone type and utility interactive one, the utility interactive systems are so valuable for power peak-cut particularly in summer season. For the maximum power point tracking(MPPT) by which the generated energy can be maximized, many control methods have been reported up to now. To overcome the disadvantages of the conventional ones, a new MPPT algorithm is proposed which can improve both tracking ability and generating efficiency of photovoltaic system without chopper.

  • PDF

A Noble Maximum Power Point Tracking Algorithm for Photovoltaic System without Chopper (초퍼 없는 태양광 발전시스템을 위한 새로운 최대전력점 추적 알고리즘)

  • 李 相 庸;崔 海 龍;高 再 錫;姜 秉 憙;李 明 彦;崔 圭 夏
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • The Photovoltaic systems with solar cell way Provide electrical energy to the utility/consumers, which are becoming one of the promising energy substitutes. The photovoltaic system can be classified into two types : One is the stand-alone type, and the other utility interactive one. The latter can return the generated power to the utility, but the former can't. The utility interactive systems are so valuable for peak power cut in summer season. In the photovoltaic systems the maximum power point tracking (MPPT) has been studied for the increase of the generating energy of the photovoltaic system. There are many control methods of MPPT, but a new MPPT algorithm is proposed to overcome the disadvantages of the conventional ones, and as a result the proposed method enables to improve both tracking ability and generating efficiency of photo voltaic system without DC chopper.

Effects of Human Activities on Home Range Size and Habitat use of the Tsushima leopard Cat Prionailurus bengalensis euptilurus in a Suburban Area on the Tsushima Islands, Japan

  • Oh, Dae-Hyun;Moteki, Shusaku;Nakanish, Nozomi;Izawa, Masako
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.3-13
    • /
    • 2010
  • The Tsushima leopard cat, Prionailurus bengalensis euptilurus, a small felid, inhabits only the Tsushima Islands in Japan. Previous studies of the Tsushima leopard cat revealed that natural factors; including sex, reproductive activity, season, and prey distribution and abundance affect leopard cat home range variation and habitat use. In this study, we focused on clarifying how anthropogenic factors influenced home range variation and habitat use of a male Tsushima leopard cat living near a suburban area in January, March, May and September 2005 using radio-tracking. The home range size (100% MCP) of this cat was $0.78\;{\pm}\;0.26\;km^2$ (mean ${\pm}$ SD, n = 4 tracking sessions) across the whole study period. However, the cat did not use all parts of its home range uniformly; rather it used some habitat types selectively. The cat avoided agriculture areas and residential areas in all of the tracking-sessions. On the other hand, the cat showed a weak preference for artificial structures and a strong preference for baiting sites in January and March, while it avoided them in May, and no baiting site was included in its home range in September. These results suggest that anthropogenic factors influenced the ranging patterns and habitat use of the leopard cat living near a suburban area. Artificial structures might provided good resting spaces for the cat in bad weather. When the density of its main prey was low in the winter, the cat tended to rely on artificial prey and had a small home range size.

Evaluation on Mechanical Properties of Polymer-Modified Warm-Mix Asphalt Mixtures for Monsoon Climate Regions (몬순기후형 중온 개질 아스팔트 혼합물의 역학적 물성 평가 연구)

  • Lee, Kanghun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.131-141
    • /
    • 2017
  • PURPOSES : The main distress of asphalt pavements in monsoon climate regions are caused by water damage and plastic deformation due to repeated rain season and increased heavy vehicle traffic volume. In this study, the mechanical properties of polymer-modified warm mix asphalt (PWMA) materials are evaluated to use in monsoon climate regions such as Indonesia. METHODS : Comprehensive laboratory tests are conducted to evaluate moisture resistance and permanent deformation resistance for three different asphalt mixtures such as the Indonesian conventional hot-mix asphalt (HMA) mixture, the polymer-modified asphalt mixture, and the polymer-modified warm mix asphalt (PWMA) mixture. Dynamic immersion test and indirect tensile strength ratio test are performed to evaluate moisture resistance. The wheel tracking test is performed to evaluate rutting resistance. Additionally, the Hamburg wheel tracking test is performed to evaluate rutting and moisture resistances simultaneously. RESULTS :The dynamic immersion test results indicate that the PWMA mixture shows the highest resistance to moisture. The indirect tensile strength ratio test indicates that TSR values of PWMA mixture, Indonesian PMA mixture, and Indonesian HMA mixture show 87.2%, 84.1%, and 67.9%, respectively. The wheel tracking test results indicate that the PWMA mixture is found to be more resistant to plastic deformation than the Indonesian PMA. The dynamic stability values are 2,739 times/mm and 3,150 times/mm, respectively. Moreover, the Hamburg wheel tracking test results indicate that PWMA mixture is more resistant to plastic deformation than Indonesian PMA and HMA mixtures. CONCLUSIONS :Based on limited laboratory test results, it is concluded that rutting resistance and moisture susceptibility of the PWMA mixture is superior to Indonesian HMA and Indonesian PMA mixtures. It is postulated that PWMA mixture would be suitable for climate and traffic conditions in Indonesia.