• Title/Summary/Keyword: TPR

Search Result 270, Processing Time 0.028 seconds

A Study on Highly Dispersed Pt/$Al2O_3$ Catalyst for Preferential CO Oxidation (고분산 담지된 Pt/$Al2O_3$ 촉매의 선택적 CO 산화반응 특성에 관한 연구)

  • Kim, Ki Hyeok;Koo, Kee Young;Jung, UnHo;Roh, Hyeon Seog;Yoon, Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.157.1-157.1
    • /
    • 2011
  • 선택적 CO 산화반응(PrOx)에 사용되는 촉매 중 Pt, Ru, Rh 등의 귀금속 계 촉매들은 비귀금속 계 촉매에 비해 활성이 좋은 반면 가격이 비싸다는 경제적인 제한점이 있다. 따라서 소량의 귀금속을 사용하여 높은 활성의 촉매를 제조하고자 활성금속의 고분산 담지 방법에 대한 연구가 이루어지고 있다. 본 연구에서는 담체인 ${\gamma}-Al_2O_3$ 표면에 활성금속인 Pt의 고분산 담지를 위해 증착-침전법(Deposition-precipitation)을 적용하였으며 용액의 pH 변화에 따른 Pt 금속 입자의 분산도에 대한 영향을 살펴보았다. Pt의 함량은 1wt%로 고정하였고 침전제로 NaOH를 사용하여 용액의 pH를 pH 7.5 ~ 10.5로 변화시켰다. 제조된 촉매는 세척 후 $400^{\circ}C$, 3시간 소성 하였다. 제조된 1wt% Pt/$Al_2O_3$ 촉매의 특성분석을 위해 BET, TPR, CO-chemisorption을 수행하였다. PrOx 반응 실험은 GHSV=60,000 $ml/g_{cat}{\cdot}h$, $T=100{\sim}200^{\circ}C$, ${\lambda}$=4 조건에서 수행되었으며 반응 전에 촉매는 $400^{\circ}C$, 3시간 환원 후 사용하였다. 촉매의 특성분석과 PrOx 반응 실험 결과를 통해 촉매가 담체 위에 고분산 되는 최적의 pH를 확인할 수 있었으며, 기존의 함침법으로 제조된 촉매와 성능 비교를 통해 제조방법에 따른 영향을 살펴보았다.

  • PDF

Promotion effect of Ru in Ni-based catalyst for combined $H_{2}O$ and $CO_{2}$ reforming of methane (메탄의 수증기/이산화탄소 복합 개질 반응용 니켈 촉매의 루테늄 증진 효과)

  • Jang, Won-Jin;Seo, Yu-Taek;Roh, Hyun-Seog;Koo, Kee-Young;Seo, Dong-Joo;Seo, Yong-Seog;Rhee, Young-Woo;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.53-56
    • /
    • 2007
  • 미량의 Ru을 증진제로 첨가하여 니켈 촉매의 반응 활성을 증진시킴으로써, 저온 환원성과 장시간 반응에 대한 안정성을 확보하고자 하였다. Ni의 담지량은 12 wt%로 고정하였으며 이에 Ru을 각각 0.1, 0.3, 0.5 wt%로 변화시켜 2차 담지하였다. 메탄의 수증기/이산화탄소 복합 개질 반응에 있어 니켈 촉매에 Ru을 2차 담지 한 촉매는 800 $^{\circ}C$, GHSV(gas hourly space velocity) 265,000 $h^{-1}$ 하에서 100 %에 가까운 $CH_{4}$ 전환율을 보였으며, GHSV 1,060,000 $h^{-1}$ 일 때에도 10시간 동안 90 %의 $CH_{4}$ 전환율을 기록하였다. 또한 이 중 0.3 wt%의 Ru를 담지한 경우가 1,060,000 $h^{-1}$의 조건하에서도 95 %이상으로 가장 높은 $CH_{4}$ 전환율로 유지되었다. $H_{2}-TPR$ 분석 결과, Ni(12)/$MgAl_{2}O_{4}$ 와 비교해 볼 때 Ru(0.5)/Ni(12)/$MgAl_{2}O_{4}$와 Ru(0.3)/Ni(12)/$MgAl_{2}O_{4}$ 촉매의 경우 150 $^{\circ}C$에서 저온 환원이 가능한 $RuO_{2}$의 존재를 확인할 수 있었다.

  • PDF

Characterization of CO Oxidatation Using the Cu, Mn impregated zeolit 13X catalyst (Cu, Mn 함침 제올라이트13X 촉매의 CO 산화 전환 반응특성)

  • Jung, Eui-Min;Kim, Dae-Kyung;Lee, Joo-Bo;Peng, Mei Mei;Song, Sung-Hwa;Moon, Mi-Mi;Jeon, Lee-Seul;Ahn, Seon-Hee;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.30-32
    • /
    • 2012
  • 본 연구에서는 Cu, Mn을 함침 시킨 상용 제올라이트13X 촉매에 CO 산화 전환 반응에 영향을 연구하였다. 촉매 제조는 담지량별로 Cu, Mn을 서로 다른 비율로 물리 혼합하여 상용 제올라이트에 담지하였다. 함침방법은 과잉용액 함침법을 사용하였고, 건조 후 공기분위기에서 소성하여 산화물 형태로 담지하였다. 기본적인 촉매 특성은 X-선 회절분석, 질소흡탈착 등온곡선을 이용하여 기공크기, 기공부피, 비표면적을 구하였으며, FT-IR, 주사현미경, $NH_3$-TPD/TPR, EDX로 특성을 분석하였다. 촉매 산화반응 실험은 고정층 반응기에서 수행하였으며, 외경1/4 inch(내경 4 mm)석영관에 촉매를 중진하고 Gas Chromatograph로 배출가스를 측정하여 Cu-Mn 제올라이트 촉매의 일산화탄소 산화반응을 연구하였다. 일산화탄소 농도, 온도 및 공간속도, Cu-Mn 함량 비율에 따른 산화반응 실험을 수행하여 최적 산화조건과 촉매를 도출하였다.

  • PDF

Effect of Template Existence on the Textural Properties of Iron-based Catalyst for Fischer Tropsch Reaction

  • Sirikulbodee, Papahtsara;Tungkamani, Sabaithip;Phongksorn, Monrudee;Ratana, Tanakorn;Sornchamni, Thana
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Fischer Tropsch reaction is one of the interesting topic for renewable and clean energy. Polymerization of carbon monoxide or carbon dioxide with hydrogen over metal supported catalyst can produce long chain hydrocarbons. Synthetic liquid hydrocarbons are promising alternative to fossil fuels. This research work has been focused on the synthesis of Fe based catalyst for Fischer Tropsch reaction. Mesoporous silica (MS) support prepared by a precipitation method using two different washing solution, distilled water (DW) and acid in ethanol solution (ET), and different calcination temperature. Then, Fe/MS was prepared by an incipient wetness impregnation method. All of samples were systematically characterized using various physical and chemical techniques. TEM and XRD analysis were used to ensure that the cubic Ia3d mesostructure is stable after calcination. FTIR spectra are useful to ascertain the existence of template in the support. TPR studies were also used to understand the nature of Fe species and their reducibility. The results reveal that washing the support with distilled water and calcination at $550^{\circ}C$ can efficiently remove the triblock copolymer templates. The existence of template in the support affects the textural properties of all catalyst investigated.

Catalytic Effects and Characteristics of Ni-based Catalysts Supported on TiO2-SiO2 Xerogel

  • Jeong, Jong-Woo;Park, Jong-Hui;Choi, Sung-Woo;Lee, Kyung-Hee;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2288-2292
    • /
    • 2007
  • The catalytic activities of nickel-based catalysts were estimated for oxidizing acetaldehyde of VOCs exhausted from industrial facilities. The catalysts were prepared by sol-gel methods of SiO2 and SiO2-TiO2 as a xerogel followed by impregnating Al2O3 powder with the nickel nitrate precursor. The crystalline structure and catalytic properties for the catalysts were investigated by use of BET surface area, X-ray diffraction (XRD), Xray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) techniques. These results show that nickel oxide is transformed to NiAl2O4 spinel structure at the calcination temperature of 400 °C in response to the steps with after- and co-impregnation of Al2O3 powder in sol-gel process. The NiAl2O4 could suppress the oxidation reaction of acetaldehyde by catalysts. The NiO is better dispersed on SiO2-TiO2/Al2O3 support than SiO2/Al2O3 and SiO2-TiO2-Al2O3 supports. From the testing results of catalytic activities for oxidation of acetaldehyde, Catalysts showed a big difference in conversion efficiencies with the way of the preparation of catalysts and the loading weight of nickel. The catalyst of 8 wt.% Ni/TiO2-SiO2/Al2O3 showed the best conversion efficiency on acetaldehyde oxidation with 100% conversion efficiency at 350 °C.

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

Partial Reduction and Water Splitting Characteristics of Metal Substituted Ferrite Mediums for Thermochemical Hydrogen Production (열화학 수소 제조를 위한 금속 치환 페라이트 매체의 부분 환원 및 물 분해 특성)

  • Lee, Dong-Hee;Kim, Hong-Soon;Cha, Kwang-Seo;Park, Chu-Sik;Kang, Kyung-Soo;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.356-364
    • /
    • 2007
  • The partial reduction and water splitting properties of metal substituted ferrite mediums for two-step thermochemical hydrogen production, were carried out by TPR/O(Temperature programmed reduction/oxidation) method at a temperature of below 1173 K and under atmospheric pressure. $ZrO_2$ was added to the ferrite as a binder to prevent the sintering. As the results, the reactivity of the metal species added to the ferrite mediums decreased in the order of Cu>Co>Ni>Mn, on the basis of water-splitting temperature. It was also found that the produced hydrogen amounts in the water-splitting step on partial reduced mediums were corresponding to the consumed hydrogen amounts in the previously partial reduction step.

Partial Oxidation of n-Octane over Rh-Containing Alumina-Supported Catalysts (알루미나에 담지된 Rh 함유 촉매의 n-옥탄 부분산화반응)

  • Lee, Shin-Hwa;Suh, Young-Woong;Suh, Dong-Jin;Park, Tae-Jin;Lee, Kwan-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.10-17
    • /
    • 2008
  • This study has been focused on the partial oxidation(POX) of n-octane over Rh-containing catalysts supported on alumina. The catalysts for this reaction were prepared by incipient wetness(IW) and co-gel(CG) methods, followed by the calcination at $900{\circ}C$ or $1,200{\circ}C$. When applied to the POX of n-octane carried out at $600{\circ}C$ with C/O=3 and GHSV=3,450/h, the catalyst prepared by the CG method and calcined at $1,200{\circ}C$ showed the best activity, yielding 42% syngas($H_2$+CO) with the $H_2$/CO ratio of $2{\sim}2.4$. To enhance the activity and stability of catalysts, bimetallic catalysts were synthesized by the CG method. As a result, the performance of Rh-Ni/$Al_2O_3$ catalyst was superior to that of Rh/$Al_2O_3$ catalyst in terms of the catalyst stability, due to the retarding effect on the Rh-to-$Rh_2O_3$ transition by the addition of Ni. This result was confirmed by XRD, TEM, and TPR characterizations.

Radiometer Performance Measure Using A Millimeterwave(Ka-band) Seeker (밀리미터파(Ka-밴드) 탐색기를 이용한 라디오미터 성능 측정)

  • Hong, Young-Gon;Lee, Man-Hee;Ahn, Se-Hwan;Kim, Young-Gon;Kim, Yoon-Jin;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.87-93
    • /
    • 2019
  • We discuss the design of a radiometer using a millimeterwave(Ka-band) seeker. We applied a total power radiometer, thus the radiometer is composed of a IF-drive amp, band-pass filter, detector and an Op-amp additionally. As a radiometer measure a radiated signal of an object which is noise-like, a radiometer is easily affected by the variance of system temperature. To mitigate an adverse effect, we propose a compensation method in a radiometer without brightmess temperature compensation circuits. Through some experiments such like a distinction a target and the background, we have verified that the designed radiometer system has distingushed a car from the ground completely.

A Study of Reactivity Improvement of Ni-based Methane Steam Reforming Catalysts by Small Addition of Noble Metals (미량 귀금속 첨가에 의한 Ni-계열 메탄 수증기 개질 촉매의 반응 활성 향상에 관한 연구)

  • Jeong, Jin-Hyeok;Koo, Kee-Young;Seo, Yu-Teak;Seo, Dong-Joo;Roh, Hyun-Seog;Seo, Yong-Seog;Lee, Deuk-Ki;Kim, Dong-Hyun;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.248-254
    • /
    • 2006
  • The promotion effects of noble metals upon the activity and reducibility in steam methane reforming over $Ni/MgAl_2O_4$ catalysts were investigated. While $Ni/MgAl_2O_4$ catalysts require the pre-reduction by $H_2$, the noble metal-added catalysts show high catalytic activities without pre-treatment. According to $CH_4$-TPR, the addition of noble metal makes the $Ni/MgAl_2O_4$ catalyst easily reducible. The reduction degree of NiO in the noble metal-added catalysts after using at $650^{\circ}C$ without pre-reduction was $15{\sim}20%$, and was lower than that in the $H_2$-reduced $Ni/MgAl_2O_4$ catalyst(reduction degree=27%). The enhancement of the catalytic activity over noble metal-added catalysts results from easier reducibility by addition of noble metal and the synergy effect between noble metal and Ni.