• Title/Summary/Keyword: TPB specimen

Search Result 3, Processing Time 0.017 seconds

Determination of J-Resistance Curves of Nuclear Structural Materials by Iteration Method

  • Byun, Thak-Sang;Bong Sang lee;Yoon, Ji-Hyun;Kuk, Il-Hiun;Hong, Jun-Hwa
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.336-343
    • /
    • 1998
  • An iteration method has been developed for determining crack growth and fracture resistance cure (J-R curve) from the load versus load-line displacement record only. In this method, the hardening curve, the load versus displacement curve at a given crack length, is assumed to be a power-law function, where the exponent varies with the crack length. The exponent is determined by an iterative calculation method with the assumption that the exponent varies linearly with the load-line displacement. The proposed method was applied to the static J-R tests using compact tension(CT) specimens, a three-point bend (TPB) specimen, and a cracked round bar (CRB) specimen as well as it was applied to the quasi-dynamic J-R tests using CT specimens. The J-R curves determined by the proposed method were compared with those obtained by the conventional testing methodologies. The results showed that the J-R curves could be determined directly by the proposed iteration method with sufficient accuracy in the specimens from SA508, SA533, and SA516 pressure vessel steels and SA312 Type 347 stainless steel.

  • PDF

Dynamic Fracture Behaviors of Concrete Three-Point Bend Specimens (콘크리트 삼점휨 시험편의 동적 파괴거동)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.689-697
    • /
    • 2002
  • The dynamic loads and load-point displacements of concrete three-point bend (TPB) specimens had been measured. The average crack velocities measured with strain gages were 0.16 ㎜/sec ∼ 66 m/sec. The fracture energy for crack extension was determined from the difference of the kinetic energy for the load-point velocity and the strain energy without permanent deformation from the measure external work. For all crack velocities, there were micro-cracking for 23 ㎜ crack extension, stable cracking for 61 ㎜ crack extension at the maximum strain energy, and then unstable cracking. The unstable crack extension was arrested at 80 ㎜ crack extension except the tests of 66 m/sec crack velocity. The tests less than 13 ㎜/sec crack velocity and faster than 1.9 m/sec showed static and dynamic fracture behaviors, respectively. In spite of much difference of the load and load-point displacement relations for the crack velocities, the crack velocities of dynamic tests did not affect on fracture energy rate during the stable crack extension due to the reciprocal action of kinetic force, crack extension and strain energy. During stable crack extension, the maximum fracture resistances of the dynamic tests was 147% larger than that of the static tests.

Resistance Curves of Concrete CLWL-DCB Specimens (콘크리트 CLWL-DCB 시험편의 저항곡선)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.357-364
    • /
    • 2002
  • The resistance curves (R-curves) for 381 m crack extension of CLWL-DCB specimens had been determined. The average velocities of the crack extension measured with strain gages were 0.70 and 55 ㎜/sec. The measured rotation angle of the notch faces showed the existence of the singularity at least before 171 and 93 mm crack extensions for the 0.70 and 55 ㎜/sec crack velocities, respectively. The maximum slopes of the R-curves occurred between 25 and 89 ㎜ crack extensions for 0.70 ㎜/sec crack velocity and between 51 and 127 ㎜ crack extensions for 55 ㎜/sec crack velocity During the maximum slopes of the R-curves, the micro-crack localization can be expected, and faster crack velocity may form longer micro-cracking and micro-crack localizing zones. The fracture resistance of 0.70 ㎜/sec crack velocity reached a roughly constant maximum value of 143 N/m at 152 ㎜ crack extension, while that of 55 ㎜/sec crack velocity increased continuously to 245 N/m at 254 ㎜ crack extension and then decreased to the value of 0.70 ㎜/sec crack velocity. The R-curve of 55 ㎜/sec crack velocity was similar to that of the small size three-point bend test, and it showed that small size specimen or fast crack velocity could cause more brittle behavior.