• Title/Summary/Keyword: TP removal

Search Result 234, Processing Time 0.026 seconds

Performance of Advanced Sewage Treatment Process with Waste Oyster Shell Media in Rural Area (폐굴껍질 담체를 이용한 마을하수고도처리공정의 성능평가)

  • Lim, Bong-Su;Yang, Yan-Hao
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • This study was carried out to evaluate the performance of Modified Ludzsck Etinger (MLE) process with waste oyster shell media in aerobic tank. Influent flow was 36 L/d and the order of reactor was anoxic, aerobic and sedimentation tank and unit hydraulic retention time was 2 hr, 6 hr and 4 hr, respectively. Sludge recycling rate in sedimentation tank and internal recycling rate were 100%. Media fill rate in aerobic tank was 5%, 10% and 17% and fluid MLSS concentration in aerobic tank was 3000~4000 mg/L. Average TCOD removal rate was 91~93%, TBOD 92~96%, SS 95~96% and when media fill rate was 10% or more, in organic compound removal it could satisfy with wastewater discharge standard. Average total nitrogen removal rate was 70~76% and average total phosphorous removal rate was 58~65%. With media fill rate increasing, total phosphorous average removal rate also increased. For it was that released calcium ion from waste oyster shell reacted with soluble phosphorous. From these experiment results, the MLE process using waste oyster shell as media is a practical method for advanced sewage treatment in rural area.

Evaluation of the Non-point Source Treatment Facility using the porous lightweight aggregate and the recycled aggregate (다공성 경량골재 및 순환골재를 이용한 비점오염원 저감시설의 처리효율 평가)

  • Kang, Young-Heoun;Jang, Dae-Chang;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.735-741
    • /
    • 2009
  • This study intends to evaluate the efficiency of non-point source reduction technique by using the porous lightweight and recycled aggregate which microorganism is seeded. In case of infiltration velocity 30~70 mm/hr in high concentration of influent, it is indicated that SS was 40~94%, COD 44~91%, BOD 4~91%, TN 1.2~66%, TP 7~70% of removal efficiency. Removal efficiency is good in infiltration velocity 30 > 50 > 70㎜/hr order. Therefore, the non-point source treatment facility filled with lightweight and recycled aggregate using microbial seeding shows higher removal efficiency than a conventional sand and gravel. We confirm that the function and efficiency are improved significantly and applied to treat non-point sources.

Sewage Treatment Using a Modified DNR Process (수정 DNR 공정을 이용한 하수처리)

  • Choi, Jin-Taek;Nam, Se-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.446-451
    • /
    • 2008
  • In this study, the removal characteristics of organic components and nutrients of sewage taken from the Suwon area were investigated in a lab-scale modified DNR (Daewoo Nutrient Removal) process. The modified DNR process consisted of a sludge denitrification tank, an anaerobic tank, an anoxic tank, an aerobic tank, a secondary anoxic tank and a secondary aerobic tank. The proposed process with the average C/N ratio of 3.5 was performed for the sewage treatment. The results were compared with other existing DNR processes. The organic fractions in sewage were analyzed by measuring the oxygen uptake rate. The resulting removal efficiencies of SS, BOD, COD, TN and TP were 93.1%, 95.5%, 86.1%, 67.8% and 80.6%, respectively.

A basic study on the reuse of shipboard wastewater(II) -An advanced treatment of shipboard wastewater by Hollow fiber UF and MF filtration- (선박용수의 재사용에 관한 기초연구(II) -중공사모듈 UF MF 필터에 의한 선박폐수의 고도처리-)

  • 김인수;김억조;김동근;고성정;안종수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • The Microfiltration and Ultrafiltration were used to treat effluent of secondary municipal wastewater treatment system(Sequencing Batch Reactor). The cross-flow hollow fiber, UF 500,000(NMWC) and MF 0.65$\mu$ membrane were selected as suitable membrane. Short term and long term fouling effect were measured as a factor of flux decrease and the fouling removal effect of mixing air bubble in the penetrant was studied. The removal of anionic sulfactants before and after formation of micelle with several kinds of oil were checked. The test results show that removal of TOC was 70~80%, TN 28% and TP 16%. The decrease of flux due to fouling were 85%(UF) and 90%(MF) after running of 100hrs. The removal of anionic sulfactants were 60~70% notwithstanding micelle or not.

  • PDF

Test-bed evaluation of developed small constructed wetland for using in urban areas (도시지역에 적용하기 위한 소규모 인공습지 Test-bed 시설 평가)

  • Kang, Chang-Guk;Lee, So-Young;Cho, Hye-Jin;Lee, Yuw-Ha;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.455-463
    • /
    • 2011
  • Conventional construction technologies have been continually applied without consideration of its impact to the environment. This resulted to various problems including the negative responses of local citizens that regarded some constructed facilities as aversive facilities causing environmental and hydraulic problems in the urban area, etc. To prevent these problems, therefore, alternative methods should be undertaken. A new approach termed "Low Impact Development (LID)" technology is currently adapted in developed countries around the world. This study aims to investigate the efficiency of the developed small constructed wetland (SCW) with horizontal subsurface flow as a LID technique applicable in urban areas. Two test-bed facilities were constructed and monitoring had been conducted between July 2010 and June 2011. Based on the findings, the removal efficiencies achieved for TSS, $COD_{Cr}$, TN, TP, Total Fe, Total Pb for the SCW-1 were 66, 53, 46, 55, 67 and 50%, respectively. On the other hand, the SCW-2 attained 82, 62, 51, 48, 74 and 42% efficiency for TSS, $COD_{Cr}$, TN, TP, Total Fe, Total Pb, respectively. The results indicated that the removal of particulate matter and heavy metals which are considered as main pollutants from stormwater runoff in urban areas was satisfactory in the system. Therefore, the test-beds proved to be appropriate for the treatment of pollutants in urban landuses such as road, parking lot, etc. The results of this study can contribute to the conservation of aquatic ecosystems and restoration of natural water cycle in the urban areas.

Development of a Vegetation Buffer Strip Module for a Distributed Watershed Model CAMEL (유역모델 CAMEL 기반 식생여과대 모듈의 개발)

  • Park, Min-Hye;Cho, Hong-Lae;Koo, Bhon-Kyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.516-531
    • /
    • 2015
  • In this study, a software module to predict the effectiveness of vegetation buffer strip (VBS) has been developed for using with Chemicals, Agricultural Management and Erosion Losses (CAMEL), a distributed watershed model. Most basic functions for the VBS module are same as CAMEL except functions newly developed to implement sedimentation enhancement by vegetation and level spreaders. For verification of the VBS module, sensitivity analyses for length, roughness, soil and vegetation type of VBS were carried out using a test grid cell. The surface discharge of sediment are highly sensitive to the roughness coefficient of VBS. The removal efficiencies of VBS for the surface discharges of sediment and TP are generally high regardless of environment changes. The surface discharges of TOC and TN are highly sensitive to the length and soil of VBS. The removal efficiencies of VBS for the surface discharges of TOC and TN are generally lower than those of sediment and TP. The newly developed VBS module reasonably simulates the removal efficiencies of surface discharges that vary according to the environment changes. It is expected that this VBS module can be used for evaluating the effectiveness of VBS-based best management practices to be applied to reduce pollution discharges from various non-point sources.

The Effect of Floating Wetland on Water Quality Improvement in a Eutrophic Lake (부유습지를 이용한 부영양수계 현장 수질개선 효과)

  • Park, Chae-Hong;Park, Myung-Hwan;Choi, Dong-Ho;Choi, Hyung-Joo;Lee, Joon-Heon;Lee, Myung-Hoon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.116-127
    • /
    • 2013
  • At weekly intervals, we monitored continuous changes in water quality by constructed floating wetland equipped with the four different filter media (sponge, volcanic stone, activated carbon and magnesium hydroxide) in a eutrophic lake from March 2011 to May 2012. We also investigated phyto- and zooplankton communities both in the influent and the effluent water through the floating wetland. Over a 10-month time period, average turbidity (66%), suspended solids (79%) and chlorophyll-a (80%) concentrations were remarkably reduced in the effluent water compared to the influent (P<0.001). The average removal rates of $NO_2-N$ and $NH_3-N$ were 24% and 20%, respectively (P<0.05). The average removal rates of $NO_3-N$ and TN were less than 10% (P>0.05). On the other hand, the average removal rates of $PO_4-P$ and TP were more than 65% (P<0.01). Interestingly, the abundance of phytoplankton in the effluent was decreased about 2.6 times compared to that of the influent, whereas the abundance of zooplankton in the effluent was increased about 3.5 times compared to that of the influent. Overall, particulate matters (SS, Chl-a and TP) and dissolved nutrients ($NO_2-N$, $NH_3-N$ and $PO_4-P$) were particularly reduced at high rates. Therefore, application of our constructed floating wetland in a eutrophic lake improved the water quality and demonstrated a potential for algal bloom mitigation.

Microalgal Growth and Nutrient Removal in a Lake, a Stream and the Outflow of a Wastewater Treatment System (호수수, 하천수와 하수처리수에서 미세조류 증식 특성 및 영양 염류 제거 효과)

  • Chang, In-Ho;Joung, Yo-Chan;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • The possibility of nutrient removal during Scenedesmus sp. growth in Lake Paldang, Geongan cheon stream, and the outflow from a wastewater treatment system was examined. Scenedesmus sp. grew well in Lake Paldang water when total nitrogen (TN) and total phosphorus (TP) values were 1.9 and 0.02 mg $L^{-1}$, respectively, and 50% of the nutrients were removed. In Geongan cheon stream, the TN and TP was 3.0 mg $L^{-1}$ and 0.09 mg $L^{-1}$, respectively, chlorophyll-${\alpha}$ reached a maximum of 239~259 $m^{-3}$, and 50% of the nutrients were removed. In the wastewater treatment outflow, where Scenedesmus sp. already existed, the organism grew well without inoculation. Scenedesmus sp. can grow with proper inoculation and physical turbulence in natural waters, such as lake and stream water, and nutrients can be eliminated as phytoplankton growth occurs.

Applicability Evaluation of the Wastewater Treatment System Using Magnetic Ion Exchange Resin in the Existing Wastewater Treatment Plant (기존하수처리장에서 자성체 이온교환수지를 이용한 하수처리공정 적용가능성 평가)

  • Park, Chan G.;Kim, Hee S.;Lee, Jung M.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • The optimal removal efficiency to develop wastewater treatment system using the magnetic ion exchange resin. The secondary sedimentation effluent of wastewater in W wastewater treatment plant located in Gyeong-gi Province was used as the influent. To compare the sedimentation effluent reacted with the magnetic ion exchange resin to the influent, the concentrations of CODmm, TN, $NO{_3}^-$-N and TP were measured. The flux of the influent and HRT were set to 250 mL/min, 10 min, respectively, and BVTR has adjusted to 200, 150, 100. The removal efficiency of CODmn, TN, $NO{_3}^-$-N and TP in the 200 BVTR from 71%, 40.37%, 46.34%, 42.03%, 150 BVTR from 55.22%, 37.83%, 50.38% 41.6% and 100 BVTR from 74%, 59.15%, 79.94%, 79.16%, respectively. The results on 200 BVTR, 150 BVTR, 100 BVTR tests show that 100 BVTR is the optimal factor capable of the highest rate of rejection of the organic material.

Influence of mixed liquor suspended solids on the removal efficiency of a hybrid membrane bioreactor

  • Palmarin, Matthew J.;Young, Stephanie
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.11-22
    • /
    • 2016
  • The characterization of treatment performance with respect to mixed liquor suspended solids (MLSS) concentration enables greater control over system performance and contaminant removal efficiency. Hybrid membrane bioreactors (HMBRs) have yet to be well characterized in this regard, particularly in the context of greywater treatment. The aim of this study, therefore, was to determine the optimal MLSS concentration for a decentralized HMBR greywater reclamation system under typical loading conditions. Treatment performance was measured at MLSS concentrations ranging from 1000 to 4000 mg/L. The treated effluent was characterized in terms of biochemical oxygen demand ($BOD_5$), chemical oxygen demand (COD), turbidity, ammonia ($NH_3$), total phosphorus (TP), total kjeldahl nitrogen (TKN), and total nitrogen (TN). An MLSS concentration ranging from 3000 to 4000 mg/L yielded optimal results, with $BOD_5$, COD, turbidity, $NH_3$, TP, TKN, and TN removals reaching 99.2%, 97.8%, 99.8%, 99.9%, 97.9%, 95.1%, and 44.8%, respectively. The corresponding food-to-microorganism ratio during these trials was approximately 0.23 to 0.28. Operation at an MLSS concentration of 1000 mg/L resulted in an irrecoverable loss of floc, and contaminant residuals exceeded typical guideline values for reuse in non-potable water applications. Therefore, it is suggested that operation at or below this threshold be avoided.