• Title/Summary/Keyword: TOWS

Search Result 43, Processing Time 0.022 seconds

The Influence of Paaax Ginseng Meal on the Milk Production and Milk Quality of Lactating Milk Cow (유중의 유우에 인삼박 급여가 유생산 및 우유품질에 미치는 영향)

  • 한석현;주현규
    • Journal of Ginseng Research
    • /
    • v.3 no.1
    • /
    • pp.54-65
    • /
    • 1979
  • To investigate the feeding value of the concentrated feedstuff including the Korean ginseng meal instead of wheat bran, Holstein milk cows were fed by this feedstuff (10kg/day) for 80 days, and the amounts of milk production and quality of milk were checked. The results are as follows: 1. Milk production of cows fed by the concentrated feedstuff including the ginseng meal was increased as averaged as 1.25kg/day compared with those of controlled cows during same period(SA) and before feeding treatment (SB). Significant different of milk production was found between cows treated and cows of SB plot, but there was no significant difference of milk production between cows treated and cows of SA plot. 2. Milk fat content was significantly increased as moth as 0.22%, 0.69% and 0.455% by the feeding of ginseng meal compared with that of SB Plat and that of SA Plot, and as average value, respectively. 3. Solid not fat (SNF) of milk from cows fed by the ginseng meal was also significantly increased as much as 0.845%, 1.339% and 1.0925 tempered with these of cows before treatment (SB) and cows controlled (SA), and as average value, respectively. 4. Specific gravity of milk produced from cows treated was higher as average as 0.0055 than those of controlled plots (SA and SB). Significant difference of specific gravity was found between cows treated and cows of SA plot, but there was no significant difference between tows treated and cods of SB plot. 5. Acidity of milk produced from cows treated was lower as averaged as 0.0045 than those of controlled plots (SA and SB). Significant difference between cows treated and cows of SA plot was found, but there was no significant difference between cows treated and cows treated and cows of SB plot.

  • PDF

Development of a Model Test System and Analysis Method for Assessing Towing Stability of a Caisson in Wet Towing (케이슨의 예인 안정성 평가를 위한 모형 시험 시스템과 해석 기법의 개발)

  • Kim, Jong-Hyeok;Seo, Jeonghwa;Kim, Han-Gyeol;Kim, Changhee;Yoo, Geuksang;Rhee, Shin Hyung;Park, Chang-wook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • The present study aims to design and utilize a model test system of a Caisson in wet towing condition, to assess towing stability of a 9,300 ton class caisson. The suggested towing system was designed to provide regular tension on the towline, whereas the previous model test system towed the model in constant speed. The new model test system was expected to reproduce the towing condition more realistically than the test system with constant speed condition, as the tugboat in actual towing condition tows the towline with constant power. Model tests were conducted in a towing tank with 1/30 scaled model. In the model tests, six-degrees-of-freedom motion of the caisson model and tension on the towline were measured and analyzed. By using the new system, fluctuation of the motion of model and tension on the towline decreased. The variation in the draft and initial trim was applied in the model tests. In the initial trim condition, the motion and towing force decreased.

Dynamic Modeling and Simulation of a Towing Rope using Multiple Finite Element Method (다물체 요소이론을 이용한 예인줄 동역학의 모델링 및 시뮬레이션)

  • Yoon, Hyeon-Kyu;Lee, Hong-Seok;Park, Jong-Kyu;Kim, Yeon-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.339-347
    • /
    • 2012
  • After towing rope connecting a barge to a tug was subdivided into multiple finite elements, then those dynamic models was established using Newton's second law and considering the external force and moment such as tension, drag, Coriolis force, gravity, buoyancy, and impact due to free surface acting on each element. While the previous research on the model of towing rope considered only translation, five-degree-of-freedom equations of motion except roll based on the body-fixed frame were established in this paper. All elements are connected by a spring and a damper, and the stiffness of the spring was set as the equivalent value of the real rope. In order to confirm the established multiple finite element model, various scenarios such as freely falling of towing rope in the air and above the free surface, accelerating of a tug which tows a barge connected by towing rope, and sinusoidal moving of a tug were set up and simulated. As the results, the trajectories of the tug, the barge, and the towing rope showed good tendencies to the ones of real expected situations.