• Title/Summary/Keyword: TOPOLOGY

Search Result 4,149, Processing Time 0.031 seconds

Topology Design Optimization of a Magnetic System Consisting of Permanent Magnets and Yokes and its Application to the Bias Magnet System of a Magnetostrictive Sensor (영구자석과 요크를 포함한 자기 시스템의 위상최적설계 및 자기 변형 센서의 바이어스 자석 설계에의 응용)

  • Cho, Seung-Hyun;Kim, Yoon-Young;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1703-1710
    • /
    • 2004
  • The objective of this investigation is to formulate and carry out the topology optimization of a magnetic system consisting of permanent magnets and yokes. Earlier investigations on magnetic field topology optimization have been limited on the design optimization of yokes or permanent magnets alone. After giving the motivation for the simultaneous design of permanent magnets and yokes, we develop the topology optimization formulation of the coupled system by extending the technique used in structural problems. In the present development, we will also examine the effects of the functional form for permeability penalization on the optimized topology.

Optimizing structural topology patterns using regularization of Heaviside function

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1157-1176
    • /
    • 2015
  • This study presents optimizing structural topology patterns using regularization of Heaviside function. The present method needs not filtering process to typical SIMP method. Using the penalty formulation of the SIMP approach, a topology optimization problem is formulated in co-operation, i.e., couple-signals, with design variable values of discrete elements and a regularized Heaviside step function. The regularization of discontinuous material distributions is a key scheme in order to improve the numerical problems of material topology optimization with 0 (void)-1 (solid) solutions. The weak forms of an equilibrium equation are expressed using a coupled regularized Heaviside function to evaluate sensitivity analysis. Numerical results show that the incorporation of the regularized Heaviside function and the SIMP leads to convergent solutions. This method is tested using several examples of a linear elastostatic structure. It demonstrates that improved optimal solutions can be obtained without the additional use of sensitivity filtering to improve the discontinuous 0-1 solutions, which have generally been used in material topology optimization problems.

Low-Overhead Feedback Topology Design for the K-User MIMO Interference Alignment

  • Jin, Jin;Gao, Xiang-Chuan;Li, Xingwang;Cavalcante, Charles Casimiro;Li, Lihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5304-5322
    • /
    • 2018
  • Since designing a feedback topology is a practical way to implement interference alignment at reduced cost of channel state information (CSI) feedback, six feedback topologies have been presented in prior works for a K-user multiple-input multiple-output interference channel. To fully reveal the potential benefits of the feedback topology in terms of the saving of CSI overhead, we propose a new feedback topology in this paper. By efficiently performing dimensionality-decreasing at the transmitter side and aligning interference signals at a subset of receivers, we show that the proposed feedback topology obtains substantial reduction of feedback cost over the existing six feedback designs under the same antenna configuration.

Three-Phase Four-Wire Inverter Topology with Neutral Point Voltage Stable Module for Unbalanced Load Inhibition

  • Cai, Chunwei;An, Pufeng;Guo, Yuxing;Meng, Fangang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1315-1324
    • /
    • 2018
  • A novel three-phase four-wire inverter topology is presented in this paper. This topology is equipped with a special capacitor balance grid without magnetic saturation. In response to unbalanced load and unequal split DC-link capacitors problems, a qusi-full-bridge DC/DC topology is applied in the balance grid. By using a high-frequency transformer, the energy transfer within the two split dc-link capacitors is realized. The novel topology makes the voltage across two split dc-link capacitors balanced so that the neutral point voltage ripple is inhibited. Under the condition of a stable neutral point voltage, the three-phase four-wire inverter can be equivalent to three independent single phase inverters. As a result, the three-phase inverter can produce symmetrical voltage waves with an unbalanced load. To avoid forward transformer magnetic saturation, the voltages of the primary and secondary windings are controlled to reverse once during each switching period. Furthermore, an improved mode chosen operating principle for this novel topology is designed and analyzed in detail. The simulated results verified the feasibility of this topology and an experimental inverter has been built to test the power quality produced by this topology. Finally, simulation results verify that the novel topology can effectively improve the inhibition of an inverter with a three-phase unbalanced load while decreasing the value of the split capacitor.

Topology Optimization of the Primary Mirror of a Multi-Spectral Camera (인공위성 카메라 주반사경의 위상최적화)

  • Park, Kang-Soo;Chang, Su-Young;Lee, Eung-Shik;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1194-1202
    • /
    • 2002
  • A study on the topology optimization of a multi-spectral camera for space-use is presented. The optimization is carried out under self-weight and polishing pressure loading. A multi-spectral camera for space-use experiences degradation of optical image in the space, which can not be detected on the optical test bench on the earth. An optical surface deformation of a primary mirror, which is a principal component of the camera system, is an important factor affecting the optical performance of the whole camera system. In this study, topology optimization of the primary mirror of the camera is presented. As an objective function, a measure of Strehl ratio is used. Total mass of the primary mirror is given as a constraint to the optimization problem. The sensitivities of the objective function and constraint are calculated by direct differentiation method. Optimization procedure is carried out by an optimality criteria method. For the light-weight primary mirror design, a three dimensional model is treated. As a preliminary example, topology optimization considering a self-weight loading is treated. In the second example, the polishing pressure is also included as a loading in the topology optimization of the mirror. Results of the optimized design topology for the mirror with various mass constraints are presented.

Improvement of Topology Algorithm's Convergence Rate Using Chaotic Map (카오틱 맵을 이용한 위상 최적화 알고리즘의 수렴속도 향상)

  • Kim, Yong-Ho;Kim, Gi-Chul;Lee, Jae-Hwan;Jang, Hyo-Jae;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.279-283
    • /
    • 2014
  • Recently, a topology algorithm based on the artificial bee colony algorithm (ABCA) has been proposed for static and dynamic topology optimization. From the results, the convergence rate of the algorithm was determined to be slightly slow. Therefore, we propose a new search method to improve the convergence rate of the algorithm using a chaotic map. We investigate the effect of the chaotic map on the convergence rate of the algorithm in static and dynamic topology optimization. The chaotic map has been applied to three cases, namely, employ bee search, onlooker bee search, and both employ bee as well as onlooker bee search steps. It is verified that the case in which the logistic function of the chaotic map is applied to both employ bee as well as onlooker bee search steps shows the best dynamic topology optimization, improved by 5.89% compared to ABCA. Therefore, it is expected that the proposed algorithm can effectively be applied to dynamic topology optimization to improve the convergence rate.

An Energy Efficient Topology Control Algorithm using Additional Transmission Range Considering the Node Status in a Mobile Wireless Sensor Network (이동성 있는 무선 센서 네트워크에서 노드의 상태를 고려한 에너지 효율적인 토폴로지 제어 방법)

  • Youn, Myungjune;Jeon, Hahn Earl;Kim, Seog-Gyu;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.767-777
    • /
    • 2012
  • Topology control increases channel efficiency by controlling transmission power of a node, and as a result, network lifetime and throughput are increased. However, reducing transmission range causes a network connectivity problem, especially in mobile networks. When a network loses connectivity, the network topology should be re-configured. However, topology re-configuration consumes lots of energy because every node need to collect neighbor information. As a result, network lifetime may decrease, even though topology control is being used to prolong the network lifetime. Therefore, network connectivity time needs to be increased to expend network lifetime in mobile networks. In this paper, we propose an Adaptive-Redundant Transmission Range (A-RTR) algorithm to address this need. A-RTR uses a redundant transmission range considering a node status and flexibly changes a node's transmission range after a topology control is performed.

Energy-Connectivity Tradeoff through Topology Control in Wireless Ad Hoc Networks

  • Xu, Mengmeng;Yang, Qinghai;Kwak, Kyung Sup
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.30-40
    • /
    • 2017
  • In this study, we investigate topology control as a means of obtaining the best possible compromise between the conflicting requirements of reducing energy consumption and improving network connectivity. A topology design algorithm capable of producing network topologies that minimize energy consumption under a minimum-connectivity constraint is presented. To this end, we define a new topology metric, called connectivity efficiency, which is a function of both algebraic connectivity and the transmit power level. Based on this metric, links that require a high transmit power but only contribute to a small fraction of the network connectivity are chosen to be removed. A connectivity-efficiency-based topology control (CETC) algorithm then assigns a transmit power level to each node. The network topology derived by the proposed CETC heuristic algorithm is shown to attain a better tradeoff between energy consumption and network connectivity than existing algorithms. Simulation results demonstrate the efficiency of the CECT algorithm.

Topology Optimization of the Primary Mirror of a Multi-Spectral Camera (인공위성 카메라 주반사경의 위상 최적화)

  • Park, Kang-Soo;Chang, Su-Young;Lee, Enug-Shik;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.920-925
    • /
    • 2001
  • A study on the topology optimization of a multi-spectral camera for space-use is presented. A multi-spectral camera for space-use experiences degradation of optical image in the space, which can not be detected on the optical test bench on the earth. An optical surface deformation of a primary mirror, which is a principal component of the camera system, under the self-weight loading is an important factor affecting the optical performance of the whole camera system. In this study, topology optimization of the primary mirror of the camera is presented. Total mass of the primary mirror is given as a constraint to the optimization problem. The sensitivities of the objective function and constraint are calculated by direct differentiation method. Optimization procedure is carried out by an optimality criterion method using the sensitivities of the objective function and the constraint. As a preliminary example, topology optimization considering a self-weight loading is treated. For practical use, the polishing pressure is included as a loading in the topology optimization of the primary mirror. Results of the optimized design topology for the primary mirror with varying mass ratios are presented.

  • PDF