• Title/Summary/Keyword: TOPIC

Search Result 4,674, Processing Time 0.025 seconds

Too Much Information - Trying to Help or Deceive? An Analysis of Yelp Reviews

  • Hyuk Shin;Hong Joo Lee;Ruth Angelie Cruz
    • Asia pacific journal of information systems
    • /
    • v.33 no.2
    • /
    • pp.261-281
    • /
    • 2023
  • The proliferation of online customer reviews has completely changed how consumers purchase. Consumers now heavily depend on authentic experiences shared by previous customers. However, deceptive reviews that aim to manipulate customer decision-making to promote or defame a product or service pose a risk to businesses and buyers. The studies investigating consumer perception of deceptive reviews found that one of the important cues is based on review content. This study aims to investigate the impact of the information amount of review on the review truthfulness. This study adopted the Information Manipulation Theory (IMT) as an overarching theory, which asserts that the violations of one or more of the Gricean maxim are deceptive behaviors. It is regarded as a quantity violation if the required information amount is not delivered or more information is delivered; that is an attempt at deception. A topic modeling algorithm is implemented to reveal the distribution of each topic embedded in a text. This study measures information amount as topic diversity based on the results of topic modeling, and topic diversity shows how heterogeneous a text review is. Two datasets of restaurant reviews on Yelp.com, which have Filtered (deceptive) and Unfiltered (genuine) reviews, were used to test the hypotheses. Reviews that contain more diverse topics tend to be truthful. However, excessive topic diversity produces an inverted U-shaped relationship with truthfulness. Moreover, we find an interaction effect between topic diversity and reviews' ratings. This result suggests that the impact of topic diversity is strengthened when deceptive reviews have lower ratings. This study contributes to the existing literature on IMT by building the connection between topic diversity in a review and its truthfulness. In addition, the empirical results show that topic diversity is a reliable measure for gauging information amount of reviews.

A Prestigious University Students' Perceptions of their Educational Attainment by a Topic model (토픽모델을 활용한 명문대 재학생의 학벌에 관한 인식 분석)

  • Young Son Jung;Seung-Yun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.503-512
    • /
    • 2024
  • This study examines the essays of academic background, written by students from a university, which is classified into prestigious universities in Korean society. By Latent Dirichlet Allocation, 172 essays were analyzed to explore the students' perspectives of the academic fractionalism. The analysis identified five topics such as, functional aspects (Topic 1), double-edged nature (Topic 2), power communities (Topic 3), symbols of victory (Topic 4), and dysfunctional aspects (Topic 5). The most frequently appearing keywords are 'individual,' 'status,' and 'means' in Topic 1, 'definition,' 'school,' and 'meaning' in Topic 2, 'people,' 'origin,' and 'power' in Topic 3, 'university,' 'ability,' and 'effort' in Topic 4, and 'academic achievement,' 'South Korea,' and 'origin' in Topic 5. By exploring the topics, we found that students regarded class reproduction by education as important social issues and they showed little interest in other factors influencing academic fractionalism, such as race or ethnicity. these findings suggest that professars, who teach the impact of education on academic fractionalism, deal with the influence of diverse factors on academic fractionalism.

R&D Perspective Social Issue Packaging using Text Analysis

  • Wong, William Xiu Shun;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.71-95
    • /
    • 2016
  • In recent years, text mining has been used to extract meaningful insights from the large volume of unstructured text data sets of various domains. As one of the most representative text mining applications, topic modeling has been widely used to extract main topics in the form of a set of keywords extracted from a large collection of documents. In general, topic modeling is performed according to the weighted frequency of words in a document corpus. However, general topic modeling cannot discover the relation between documents if the documents share only a few terms, although the documents are in fact strongly related from a particular perspective. For instance, a document about "sexual offense" and another document about "silver industry for aged persons" might not be classified into the same topic because they may not share many key terms. However, these two documents can be strongly related from the R&D perspective because some technologies, such as "RF Tag," "CCTV," and "Heart Rate Sensor," are core components of both "sexual offense" and "silver industry." Thus, in this study, we attempted to discover the differences between the results of general topic modeling and R&D perspective topic modeling. Furthermore, we package social issues from the R&D perspective and present a prototype system, which provides a package of news articles for each R&D issue. Finally, we analyze the quality of R&D perspective topic modeling and provide the results of inter- and intra-topic analysis.

A Topic Classification System Based on Clue Expressions for Person-Related Questions and Passages (단서표현 기반의 인물관련 질의-응답문 문장 주제 분류 시스템)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.12
    • /
    • pp.577-584
    • /
    • 2015
  • In general, Q&A system retrieves passages by matching terms of a question in order to find an answer to the question. However it is difficult for Q&A system to find a correct answer because too many passages are retrieved and matching using terms is not enough to rank them according to their relevancy to a question. To alleviate this problem, we introduce a topic for a sentence, and adopt it for ranking in Q&A system. We define a set of person-related topic class and a clue expression which can indicate a topic of a sentence. A topic classification system proposed in this paper can determine a target topic for an input sentence by using clue expressions, which are manually collected from a corpus. We explain an architecture of the topic classification system and evaluate the performance of the components of this system.

Topic Modeling and Sentiment Analysis of Twitter Discussions on COVID-19 from Spatial and Temporal Perspectives

  • AlAgha, Iyad
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.1
    • /
    • pp.35-53
    • /
    • 2021
  • The study reported in this paper aimed to evaluate the topics and opinions of COVID-19 discussion found on Twitter. It performed topic modeling and sentiment analysis of tweets posted during the COVID-19 outbreak, and compared these results over space and time. In addition, by covering a more recent and a longer period of the pandemic timeline, several patterns not previously reported in the literature were revealed. Author-pooled Latent Dirichlet Allocation (LDA) was used to generate twenty topics that discuss different aspects related to the pandemic. Time-series analysis of the distribution of tweets over topics was performed to explore how the discussion on each topic changed over time, and the potential reasons behind the change. In addition, spatial analysis of topics was performed by comparing the percentage of tweets in each topic among top tweeting countries. Afterward, sentiment analysis of tweets was performed at both temporal and spatial levels. Our intention was to analyze how the sentiment differs between countries and in response to certain events. The performance of the topic model was assessed by being compared with other alternative topic modeling techniques. The topic coherence was measured for the different techniques while changing the number of topics. Results showed that the pooling by author before performing LDA significantly improved the produced topic models.

A Study of Slow Fashion on YouTube Through Big Data Analysis (유튜브에 나타난 슬로우 패션의 빅데이터 분석)

  • Sen Bin;Haejung Yum
    • Journal of Fashion Business
    • /
    • v.27 no.4
    • /
    • pp.50-66
    • /
    • 2023
  • The purpose of this study was to examine the word distribution and topic distribution of slow fashion appearing on YouTube in detail and identify the characteristics and aspects related to fashion design through big data analysis and content analysis methods. The specific research results were as follows. First, in the results of the word distribution analysis, "item" appeared the most, 203 times. Also, "one-piece" was a point to pay attention to, as the item had the highest frequency. Second, a total of 5 topics were defined in the topic distribution analysis: topic 1 was "vintage products," topic 2 was "fashion items," topic 3 was "eco-friendly," topic 4 was "life quality emphasis," and topic 5 was "prudent consumption." Third, looking at the relationship between word distribution and topic distribution above, Korean slow fashion on YouTube was actively selecting related design elements that express vintage images in clothing life regardless of trends. In addition, there was a tendency to pursue various basic and high-quality items. Other than those findings, basic items tended to be reinterpreted in various ways through styling methods matched to the vintage image. Lastly, the tendency of slow and small-volume production appeared to emphasize handicrafts and the cultural values of fashion products.

Personalized Topic map Ranking Algorithm using the User Profile (사용자 프로파일을 이용한 개인화된 토픽맵 랭킹 알고리즘)

  • Park, Jung-Woo;Lee, Sang-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.8
    • /
    • pp.522-528
    • /
    • 2008
  • Topic map typically provide information to user through the selection of topics, that is using only topic, association, occurrence on the first topicmap which is made by domain expert without regard to individual interests or context, for the purpose of supplementation for the weakness which is providing personalized topic map information, personalization has been studied for supporting user preference through preseting of customize, filtering, scope, etc in topic map. Nevertheless, personalization in current topicmap is not enough to user so far. In this paper, we propose a design of PTRS(personalized topicmap ranking system) & algorithm, using both user profile(click through data) and basic element of topic map(topic, association) on knowledge layer in specific domain topicmap, therefore User has strong point that is improvement of personal facilities to user through representation of ranked topicmap information in consideration of user preference using PTRS.

A Study on the Application of Topic Modeling for the Book Report Text (독후감 텍스트의 토픽모델링 적용에 관한 탐색적 연구)

  • Lee, Soo-Sang
    • Journal of Korean Library and Information Science Society
    • /
    • v.47 no.4
    • /
    • pp.1-18
    • /
    • 2016
  • The purpose of this study is to explore application of topic modeling for topic analysis of book report. Topic modeling can be understood as one method of topic analysis. This analysis was conducted with texts in 23 book reports using LDA function of the "topicmodels" package provided by R. According to the result of topic modeling, 16 topics were extracted. The topic network was constructed by the relation between the topics and keywords, and the book report network was constructed by the relation between book report cases and topics. Next, Centrality analysis was conducted targeting the topic network and book report network. The result of this study is following these. First, 16 topics are shown as network which has one component. In other words, 16 topics are interrelated. Second, book report was divided into 2 groups, book reports with high centrality and book reports with low centrality. The former group has similarities with others, the latter group has differences with others in aspect of the topics of book reports. The result of topic modeling is useful to identify book reports' topics combining with network analysis.

Topic Modeling Analysis of Franchise Research Trends Using LDA Algorithm (LDA 알고리즘을 이용한 프랜차이즈 연구 동향에 대한 토픽모델링 분석)

  • YANG, Hoe-Chang
    • The Korean Journal of Franchise Management
    • /
    • v.12 no.4
    • /
    • pp.13-23
    • /
    • 2021
  • Purpose: This study aimed to derive clues for the franchise industry to overcome difficulties such as various legal regulations and social responsibility demands and to continuously develop by analyzing the research trends related to franchises published in Korea. Research design, data and methodology: As a result of searching for 'franchise' in ScienceON, abstracts were collected from papers published in domestic academic journals from 1994 to June 2021. Keywords were extracted from the abstracts of 1,110 valid papers, and after preprocessing, keyword analysis, TF-IDF analysis, and topic modeling using LDA algorithm, along with trend analysis of the top 20 words in TF-IDF by year group was carried out using the R-package. Results: As a result of keyword analysis, it was found that businesses and brands were the subjects of research related to franchises, and interest in service and satisfaction was considerable, and food and coffee were prominently studied as industries. As a result of TF-IDF calculation, it was found that brand, satisfaction, franchisor, and coffee were ranked at the top. As a result of LDA-based topic modeling, a total of 12 topics including "growth strategy" were derived and visualized with LDAvis. On the other hand, the areas of Topic 1 (growth strategy) and Topic 9 (organizational culture), Topic 4 (consumption experience) and Topic 6 (contribution and loyalty), Topic 7 (brand image) and Topic 10 (commercial area) overlap significantly. Finally, the trend analysis results for the top 20 keywords with high TF-IDF showed that 10 keywords such as quality, brand, food, and trust would be more utilized overall. Conclusions: Through the results of this study, the direction of interest in the franchise industry was confirmed, and it was found that it was necessary to find a clue for continuous growth through research in more diverse fields. And it was also considered an important finding to suggest a technique that can supplement the problems of topic trend analysis. Therefore, the results of this study show that researchers will gain significant insights from the perspectives related to the selection of research topics, and practitioners from the perspectives related to future franchise changes.

Expansion of Topic Modeling with Word2Vec and Case Analysis (Word2Vec를 이용한 토픽모델링의 확장 및 분석사례)

  • Yoon, Sang Hun;Kim, Keun Hyung
    • The Journal of Information Systems
    • /
    • v.30 no.1
    • /
    • pp.45-64
    • /
    • 2021
  • Purpose The traditional topic modeling technique makes it difficult to distinguish the semantic of topics because the key words assigned to each topic would be also assigned to other topics. This problem could become severe when the number of online reviews are small. In this paper, the extended model of topic modeling technique that can be used for analyzing a small amount of online reviews is proposed. Design/methodology/approach The extended model of being proposed in this paper is a form that combines the traditional topic modeling technique and the Word2Vec technique. The extended model only allocates main words to the extracted topics, but also generates discriminatory words between topics. In particular, Word2vec technique is applied in the process of extracting related words semantically for each discriminatory word. In the extended model, main words and discriminatory words with similar words semantically are used in the process of semantic classification and naming of extracted topics, so that the semantic classification and naming of topics can be more clearly performed. For case study, online reviews related with Udo in Tripadvisor web site were analyzed by applying the traditional topic modeling and the proposed extension model. In the process of semantic classification and naming of the extracted topics, the traditional topic modeling technique and the extended model were compared. Findings Since the extended model is a concept that utilizes additional information in the existing topic modeling information, it can be confirmed that it is more effective than the existing topic modeling in semantic division between topics and the process of assigning topic names.