• Title/Summary/Keyword: TOA reflectance

Search Result 29, Processing Time 0.022 seconds

Accuracy Comparison of TOA and TOC Reflectance Products of KOMPSAT-3, WorldView-2 and Pléiades-1A Image Sets Using RadCalNet BTCN and BSCN Data

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.21-32
    • /
    • 2022
  • The importance of the classical theme of how the Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance of high-resolution satellite images match the actual atmospheric reflectance and surface reflectance has been emphasized. Based on the Radiometric Calibration Network (RadCalNet) BTCN and BSCN data, this study compared the accuracy of TOA and TOC reflectance products of the currently available optical satellites, including KOMPSAT-3, WorldView-2, and Pléiades-1A image sets calculated using the absolute atmospheric correction function of the Orfeo Toolbox (OTB) tool. The comparison experiment used data in 2018 and 2019, and the Landsat-8 image sets from the same period were applied together. The experiment results showed that the product of TOA and TOC reflectance obtained from the three sets of images were highly consistent with RadCalNet data. It implies that any imagery may be applied when high-resolution reflectance products are required for a certain application. Meanwhile, the processed results of the OTB tool and those by the Apparent Reflection method of another tool for WorldView-2 images were nearly identical. However, in some cases, the reflectance products of Landsat-8 images provided by USGS sometimes showed relatively low consistency than those computed by the OTB tool, with the reference of RadCalNet BTCN and BSCN data. Continuous experiments on active vegetation areas in addition to the RadCalNet sites are necessary to obtain generalized results.

Study on Radiometric Variability of the Sonoran Desert for Vicarious Calibration of Satellite Sensors (위성센서 대리 검보정을 위한 소노란 사막의 복사 가변성 연구)

  • Kim, Wonkook;Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.209-218
    • /
    • 2013
  • The Sonoran Desert, which is located in North America, has been frequently used for vicarious calibration of many optical sensors in satellites. Although the desert area has good conditions for vicarious calibration (e.g. high reflectance, little vegetation, large area, low precipitation), its adjacency to the sea and large variability in atmospheric water vapor are the disadvantages for vicarious calibration. For vicarious calibration using top-of-atmospheric (TOA) reflectance, the atmospheric variability brings about degraded precision in vicarious calibration results. In this paper, the location with the smallest radiometric variability in TOA reflectance is sought by using 12-year Landsat 5 data, and corrected the TOA reflectance for bidirectional reflectance distribution function (BRDF) which is another major source of variability in TOA reflectance. Experiments show that the mid-western part of the Sonoran Desert has the smallest variability collectively for visible and near-infrared bands, and the variability from the sunarget-sensor geometry can be reduced by the BRDF correction for the visible bands, but not sufficiently for the infrared bands.

Atmospheric Correction Effectiveness Analysis of Reflectance and NDVI Using Multispectral Satellite Image (다중분광위성자료의 대기보정에 따른 반사도 및 식생지수 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.981-996
    • /
    • 2018
  • In agriculture, remote sensing data using earth observation satellites have many advantages over other methods in terms of time, space, and efficiency. This study analyzed the changes of reflectance and vegetation index according to atmospheric correction of images before using satellite images in agriculture. Top OF Atmosphere (TOA) reflectance and surface reflectance through atmospheric correction were calculated to compare the reflectance of each band and Normalized Vegetation difference Index (NDVI). As a result, the NDVI observed from field measurement sensors and satellites showed a higher agreement and correlation than the TOA reflectance calculated from surface reflectance using atmospheric correction. Comparing NDVI before and after atmospheric correction for multi-temporal images, NDVI increased after atmospheric corrected in all images. garlic and onion cultivation area and forest where the vegetation health was high area NDVI increased more 0.1. Because the NIR images are included in the water vapor band, atmospheric correction is greatly affected. Therefore, atmospheric correction is a very important process for NDVI time-series analysis in applying image to agricultural field.

OPTICAL PROPERTIES OF ASIAN DUST AEROSOL DERIVED FROM SEAWIFS AND LIDAR OBSERVATIONS: A CASE STUDY OF DUST OVER CLOUDS

  • Fukushima, H.;Kobayashi, H.;Murayama, T.;Ohta, S.;Uno, I.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.367-372
    • /
    • 2002
  • Asian dust aerosol layer of 4-6 km altitude accompanied by low clouds was observed by LIDAR and sky-radiometer in Tokyo urban area on April 10, 2001. To synthesize the top of atmosphere (TOA) reflectance, radiative transfer simulation conducted assuming aerosol/cloud vertical structure and aerosol size distribution that were modeled after the ground observations. The refractive index of Asian dust is derived from a laboratory measurement of sampled Chinese soil particles. The synthesized TOA reflectance is compared to the SeaWiFS-derived one sampled at the low cloud pixels whose airmass is the same as the one passed at the observation site. While the two TOA reflectances compare generally well with few percent difference in reflectance, possible sources of the discrepancy are discussed.

  • PDF

An estimation of surface reflectance for Advanced Himawari Imager (AHI) data using 6SV

  • Seong, Noh-hun;Lee, Chang Suk;Choi, Sungwon;Seo, Minji;Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 2016
  • The surface reflectance is essential to retrieval various indicators related land properties such as vegetation index, albedo and etc. In this study, we estimated surface reflectance using Himawari-8 / Advanced Himawari Imager (AHI) channel data. In order to estimate surface reflectance from Top of Atmosphere (TOA) reflectance, the atmospheric correction is necessary because all of the TOA reflectance from optical sensor is affected by gas molecules and aerosol in the atmosphere. We used Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model (RTM) to correct atmospheric effect, and Look-Up Table (LUT) to shorten the calculation time. We verified through comparison Himawri-8 / AHI surface reflectance and Proba-V S1 products. As a result, bias and Root Mean Square Error (RMSE) are calculated about -0.02 and 0.05.

ABSOLUTE RADIOMETRIC CALIBRATION OF 1M SATELLITE IMAGERY

  • Lee Sun-Gu;Lee Dong-han;Seo Doo-chun;Song Jeong Heon;Kim Yongseung;Paik Hongyul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.616-619
    • /
    • 2005
  • CALNAL team of Korea Aerospace Research Institute(KARI) performed field campaigns for absolute radiometric calibration of 1m satellite image on Daejeon and the cal/val site of Goheung. The satellite image have spatial resolution of 1m in panchromatic spectral band of 450-900nm. The performed cal/val method is the reflectance-based of vicarious calibration methods. We collected ground-based and meteology data such as temperature, surface pressure and reflectance of targets, and radiosonde data used only to test in Goheung. Data collected on each field served as input to radiative transfer codes to generate a top-of-atmosphere(TOA) radiance estimate. Derived TOA is compared with DN of overpass satellite to calculate calibration coefficient of gain and offset.

  • PDF

Field Campaigns and test results for Absolute Radiometric Calibration (Absolute Radiometric Calibration을 위한 Field Campaign과 시험결과)

  • Lee, Seon-Gu;Kim, Yong-Seung
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.213-219
    • /
    • 2006
  • Korea Aerospace Research Institute(KARI) performed field campaigns for absolute radiometric calibration with overpassing of satellite Orbview-3 on Cal/ Val site in Goheung and Daejeon. The performed Cal/Val method is the reflectance-based of vicarious calibration methods. We collected ground-based and meteology data such as temperature, surface pressure and reflectance of targets, and radiosonde data only collected on Goheung. Data collected on each field served as input to radiative transfer codes to generate a top-of-atmosphere(TOA) radiance. Derived TOA is compared with DN of overpassing satellite Orbview-3 to calculate calibration coefficient of gain and offset. Also, This study proposed a proper method to prepare absolute radiometic calibration of KOMPSAT-2 by using experience of Field campaign.

  • PDF

Radiometric Cross Validation of KOMPSAT-3 AEISS (다목적실용위성 3호 AEISS센서의 방사 특성 교차 검증)

  • Shin, Dong-yoon;Choi, Chul-uong;Lee, Sun-gu;Ahn, Ho-yong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.529-538
    • /
    • 2016
  • This study, multispectral and hyperspectral sensors were utilized to use radiometric cross validation for the purpose of radiometric quality evaluation of a 'KOMPSAT-3'. Images of EO-1 Hyperion and Landsat-8 OLI sensors taken in PICS site were used. 2 sections that have 2 different types of ground coverage respectively were selected as the site of cross validation based on aerial hyperspectral sensor and TOA Reflectance. As a result of comparison between the TOA reflectance figures of KOMPSAT-3, EO-1 Hyperion and CASI-1500, the difference was roughly 4%. It is considered that it satisfies the radiological quality standard when the difference of figure of reflectance in a comparison to the other satellites is found within 5%. The difference in Blue, Green, Red band was approximately 3% as a comparison result of TOA reflectance. However the figure was relatively low in NIR band in a comparison to Landsat-8. It is thought that the relatively low reflectance is because there is a difference of band passes in NIR band of 2 sensors and in a case of KOMPSAT-3 sensor, a section of 940nm, which shows the strong absorption through water vapor, is included in band pass resulting in comparatively low reflectance. To overcome these conditions, more detailed analysis with the application of rescale method as Spectral Bandwidth Adjustment Factor (SBAF) is required.

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

A Study on the Retrieval of River Turbidity Based on KOMPSAT-3/3A Images (KOMPSAT-3/3A 영상 기반 하천의 탁도 산출 연구)

  • Kim, Dahui;Won, You Jun;Han, Sangmyung;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1285-1300
    • /
    • 2022
  • Turbidity, the measure of the cloudiness of water, is used as an important index for water quality management. The turbidity can vary greatly in small river systems, which affects water quality in national rivers. Therefore, the generation of high-resolution spatial information on turbidity is very important. In this study, a turbidity retrieval model using the Korea Multi-Purpose Satellite-3 and -3A (KOMPSAT-3/3A) images was developed for high-resolution turbidity mapping of Han River system based on eXtreme Gradient Boosting (XGBoost) algorithm. To this end, the top of atmosphere (TOA) spectral reflectance was calculated from a total of 24 KOMPSAT-3/3A images and 150 Landsat-8 images. The Landsat-8 TOA spectral reflectance was cross-calibrated to the KOMPSAT-3/3A bands. The turbidity measured by the National Water Quality Monitoring Network was used as a reference dataset, and as input variables, the TOA spectral reflectance at the locations of in situ turbidity measurement, the spectral indices (the normalized difference vegetation index, normalized difference water index, and normalized difference turbidity index), and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived atmospheric products(the atmospheric optical thickness, water vapor, and ozone) were used. Furthermore, by analyzing the KOMPSAT-3/3A TOA spectral reflectance of different turbidities, a new spectral index, new normalized difference turbidity index (nNDTI), was proposed, and it was added as an input variable to the turbidity retrieval model. The XGBoost model showed excellent performance for the retrieval of turbidity with a root mean square error (RMSE) of 2.70 NTU and a normalized RMSE (NRMSE) of 14.70% compared to in situ turbidity, in which the nNDTI proposed in this study was used as the most important variable. The developed turbidity retrieval model was applied to the KOMPSAT-3/3A images to map high-resolution river turbidity, and it was possible to analyze the spatiotemporal variations of turbidity. Through this study, we could confirm that the KOMPSAT-3/3A images are very useful for retrieving high-resolution and accurate spatial information on the river turbidity.