• Title/Summary/Keyword: TN-S System

Search Result 113, Processing Time 0.025 seconds

The Application Method of a Protection Conductor for the Prevention of Electric Shock in England (감전사고 예방을 위한 영국의 보호도체 적용 방법)

  • Jung, Jin-Soo;Jung, Jong-Wook;Han, Woon-Ki;Lee, Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2216-2217
    • /
    • 2008
  • This paper write about earth system for the prevention electric shock and a protection of equipment in england. The IEC60364 and BSI(British Standards Institution) define earthing method(IT, TT, TN-C, TN-S, TN-C-S)-BSI is british standards and in case of england almost use the TN system. TN system can classify TN-S & TN-C-S(PME). The findings on survey in england are used the TN-S system and TN-C-S system about 70% and residue 30% are used TT system and IT system from the exiting state of things.

  • PDF

The Comparison and Analysis about Earth System based on IEC60364 (IEC 60364 기반 접지계통 비교 분석)

  • Jung, Jin-Soo;Han, Woon-Ki;Kim, Oh-Hwan;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.56-62
    • /
    • 2010
  • This paper describes the analysis of loop impedance characteristics by impedance alteration of protective conductors and operating characteristics of electric leakage circuit breaker by each earth systems(TT system, TN-S system and TN-C system) in IEC 60364. As a result, loop Impedance was affected by resistance & inductance. The current& voltage characteristics about earth system were identified that the TN-S system was high fault current & low touch voltage. TN-C system was almost same the TN-S system but TT system was low fault current & high touch voltage.

Hazards and Solutions of Loss of the PEN Conductor in TN-C-S System (TN-C-S계통에서 PEN도체의 단선고장의 위험성 및 보호대책)

  • Lee, Bok-Hee;Lee, Kyu-Sun;Ahn, Chang-Hwan;Kim, Han-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.113-120
    • /
    • 2007
  • This paper presents the electric shock hazards and solutions of loss of the combined protective and neutral (PEN) conductor in TN-C-S system. In order to mitigate the touch voltage on exposed-conductive-parts in a break in the PEN conductor, the touch voltages on exposed-conductive-parts in a break in the PEN conductor were experimentally investigated as a function of the ground resistances of the source grounding electrode and customer's additional grounding electrode. As a result, the equipotential bonding is one of important requirements for installations supplied by TN-C-S system. A solution of mitigating the touch voltages on exposed-conductor-parts caused by a loss of the PEN conductor would be the installation of the additional grounding electrode at the customer's service entrance. The ground resistance of additional grounding electrode necessary to limit the touch voltage to a safety voltage of less than 50[V] depends on the load and circuit parameters. In addition, the undervoltage sensing devices oner affordable solutions to detect a loss of the PEN conductor in TN-C-S system.

Personnel Safety Related to Disconnection of PEN Conductor in TN-C-S System (TN-C-S계통에서 PEN도체 단선이 인체안전에 미치는 영향)

  • Kim, Jung-Cheol;Lee, Kyu-Sun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.58-64
    • /
    • 2012
  • In electric power supply systems, an earthing system determines the electric potential of the conductors related to that of the Earth's surface. The choice of earthing system has implications for the safety of the power supply systems. There are considerably different regulations for earthing (grounding) systems in each country. A protective earth(PE) conductor ensures that all exposed conductive surfaces are at the same electric potential as the earth surface. This paper deals with that when PEN conductor of TN-C-S system is disconnected, dangerous touch voltage causes personnel body to be harmed and human being's property to be damaged seriously. For this reason, this paper explains how serious problems can occur when the fault current flows. As a consequence, we can understand how we can design earthing system properly to ensure the personnel safety against earth faults. The result shows the way that TN-C-S system can be applied safely in Korea.

Personnel safety related to a loss of PEN conductor in TN-C-S system (TN-C-S계통에서 PEN도체 단선이 인체안전에 미치는 영향)

  • Kim, Jung-Cheol;Lee, Bok-Hee;Lee, Kyu-Sun;Joe, Jung-Hyun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.59-62
    • /
    • 2009
  • In electrical power supply systems, an earthing system determines the electrical potential of the conductors relative to that of the Earth's conductive surface. The choice of earthing system has implications for the safety of the power supply. Note that regulations for earthing (grounding) systems vary considerably among different countries. A protective earth(PE) connection ensures that all exposed conductive surfaces are at the same electrical potential as the surface of the Earth, This paper investigates that when PEN conductor of TN-C-S system is disconnected, dangerous touch voltage is caused at personnel body. According to this paper, we can understand that when TN-C-S system is applied in Korea, what we should set up to ensure the personnel safety from fault current.

  • PDF

A Study on the Measurement and Determination of External Loop Impedance on TN-C-S System (TN-C-S 접지계통에서 외부 루프 임피던스의 실측 및 기준값 설정에 관한 연구)

  • Yi, Geon-Ho;Jung, Jin-Soo;Moon, Hyun-Wook;Kim, Sun-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1163-1168
    • /
    • 2013
  • The maximum allowable value of loop impedance($Z_s$) to secure the operation of overcurrent protective devices and the safety for indirect contact is a very important in TN-C-S system. The loop impedance is divided into inner loop impedance which consumer can adjust and external loop impedance($Z_e$) which only electric operator can adjust. Thus, an external loop impedance which limits to less than a certain value is a very important factor for human body protection against electric shock in TN-C-S system. The concept of loop impedance($Z_s$) is recently introduced to the domestic, the study about external loop impedance is yet insufficient. However, the study about the reference impedance as specified by the IEC 60725 standard to improve the quality and reliability of the power supply is being made. In this paper, reference value of external loop impedance($Z_e$) to meet domestic environment will be proposed by the nationwide measurement and statistical analysis.

Assessment Method and Calculations for Protective Conductor of TN-S System and IEC 60364 Application (IEC 60364 적용 및 TN-S 시스템에서 보호 도체 산정 및 적정성에 관한 연구)

  • Kim, Gi-Hyun;Lee, Ju-Chul;Choi, Young-Kyu;Kim, Han-Su;Lee, Young-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.86-91
    • /
    • 2012
  • A conductor has been produced according to IEC standard and low voltage electrical facility has been installed according to IEC 60364. So we must comply with international standard for design, construction and inspection. But because of many related and varied standards, it is difficult to apply to design and inspect for electrical equipment. We researched the necessity of design guide which is detailed and systematization from survey. For detailed design guide, we suggest calculation method of protective conductor cross-sectional area at TN-S system according to BS 7671 regulation and KS C IEC 60364 standard.

Modeling and Implementation of Safety Test Device for Grounding System Based on IEC 60364 (IEC 60364의 접지방식에 기반한 안전성 평가 시험장치의 모델링 및 구현에 관한 연구)

  • Kim, Soon-Sik;Han, Byeong-Gill;Lee, Hu-Dong;Ferreira, Marito;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.599-609
    • /
    • 2021
  • A novel grounding system, which is presented in IEC 60364, has been adopted since 2021. A safety evaluation for the human body on the grounding system is required due to the various characteristics of the touch voltage and current passing when the human body experiences an electric shock. The Korea Electrical Safety Corporation (KESCO) and Korea Electric Association (KEA) have been conducting a safety technical education on the grounding system. On the other hand, it is difficult to instruct the electrical safety manager because of a lack of safety evaluations for the test equipment on the grounding system. Therefore, this paper modeled and implemented a test device for a safety evaluation depending on the grounding system of IEC 60364. Namely, this paper presents the modeling of the test device for a safety evaluation using PSCAD/EMTDC S/W, which is composed of an AC grid section, s test device section on the grounding system, and a sub-device section. This paper implemented a test device for safety evaluation, which consisted of an AC grid section, TT grounding system section, TN-S grounding system section, and monitoring section. From the simulation and test results with the safety characteristics of the human body in the TT and TN-S grounding system, when the fault impedances are 0[Ω], 10[Ω], and 100[Ω], the currents passing through the human body in the TT grounding system are 104[mA], 87.4[mA], and 35.5[mA], respectively. The corresponding currents in the TN-S grounding system are 54.9[mA], 4.1[mA], and 0.4[mA], respectively. Based on the results, the protection performance for an electric shock to the human body in the TN-S system is better than the TT system. This can be improved when the existing grounding system is changed from the TT system to the TN-S system.

Performance Evaluation of Protection against Electric Shocks for TT and TN Systems (TT, TN접지계통의 감전보호 성능평가)

  • Lee, Bok-Hee;Choi, Young-Chul;Yoo, Jae-Duk;Shin, Hee-Kyung;Yang, Soon-Man;Kim, Tae-Gi;Lee, Zu-Cheul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.315-318
    • /
    • 2009
  • Electric shock is the accident caused by the current through a person or animal's body. That is characterized by the physiological effects. In this paper, we evaluate performance of protection against electric shocks for TT and TN grounding systems which are used by a low voltage consumer nowadays. The performance of protection against electric shocks for TT grounding system is very excellent in equipotential area of the third class grounding, but the performance is poor outside the equipotential area. The performance of protection against electric shocks for TN grounding system is excellent because the potential difference is less than 50V. Accordingly, the performance of protection for TN grounding system is good as compared with that for TT grounding System.

  • PDF

Analysis of a Controllable M/G/1 Queueing Model Operating under the (TN) Policy ((TN) 운용방침이 적용되는 조정가능한 M/G/1 대기모형 분석)

  • Rhee, Hahn-Kyou
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.96-103
    • /
    • 2014
  • A steady-state controllable M/G/1 queueing model operating under the (TN) policy is considered where the (TN) policy is defined as the next busy period will be initiated either after T time units elapsed from the end of the previous busy period if at least one customer arrives at the system during that time period, or the time instant when Nth customer arrives at the system after T time units elapsed without customers' arrivals during that time period. After deriving the necessary system characteristics such as the expected number of customers in the system, the expected length of busy period and so on, the total expected cost function per unit time in the system operation is constructed to determine the optimal operating policy. To do so, the cost elements associated with such system characteristics including the customers' waiting cost in the system and the server's removal and activating cost are defined. Then, the optimal values of the decision variables included in the operating policies are determined by minimizing the total expected cost function per unit time to operate the system under consideration.