• Title/Summary/Keyword: TMD (Tuned Mass Damper)

Search Result 206, Processing Time 0.027 seconds

Location Effect of Tuned Mass Dampers on the Response of Buildings (TMD의 위치변화에 따른 건물의 응답효과)

  • Min, Kyung-Won;Hong, Sung-Mok;Hwang, Jae-Seung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.95-99
    • /
    • 1993
  • Conventional tuned mass dampers are located on the top floor of tall buildings, which reduce the fundamental mode response of buildings. Higher modes may have a greater contribution toward the acceleration response of tall buildings. To reduce this, additional tuned mass dampers are required and could be substituted as building equipments. This paper shows, with a numerical ezample, how the lecate tuned mass damper in order to reduce the higher mode response effectively

  • PDF

Extracting parameters of TMD and primary structure from the combined system responses

  • Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.937-960
    • /
    • 2015
  • Tuned mass dampers (TMDs) have been a prevalent vibration control device for suppressing excessive vibration because of environmental loadings in contemporary tall buildings since the mid-1970s. A TMD must be tuned to the natural frequency of the primary structure to be effective. In practice, a TMD may be assembled in situ, simultaneously with the building construction. In such a situation, the respective dynamic properties of the TMD device and building cannot be identified to determine the tuning status of the TMD. For this purpose, a methodology was developed to obtain the parameters of the TMD and primary building on the basis of the eigenparameters of any two complex modes of the combined building-TMD system. The theory was derived in state-space to characterize the nonclassical damping feature of the system, and combined with a system identification technique to obtain the system eigenparameters using the acceleration measurements. The proposed procedure was first demonstrated using a numerical verification and then applied to real, experimental data of a large-scale building-TMD system. The results showed that the procedure is capable of identifying the respective parameters of the TMD and primary structure and is applicable in real implementations by using only the acceleration response measurements of the TMD and its located floor.

Vibration control of an SDOF structure using semi-active tuned mass damner (준능동 TMD를 이용한 단자유도 구조물의 진동제어)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.424-431
    • /
    • 2006
  • Many types of tuned mass dampers (TMDs), such as active TMDs, multiple TMDs, hybrid TMDs etc., have been studied to effectively reduce the dynamic responses of a structure subjected to various types of dynamic loads. In this study, we replace a passive damper by a semi-active tuned mass damper to improve the control performance of conventional TMDs (STMD). An idealized variable damping device is used as semi-active dampers. These semi-active dampers can change the properties of TMDs in real time based on the dynamic responses of a structure. The control performance of STMD is investigated with respect to various types of excitation by numerical simulation. Groundhook control algorithm is used to appropriately modulate the damping force of semi-active dampers. The control effectiveness between STMD and a conventional passive TMD, both under harmonic and random excitations, is evaluated and compared for a single-degree-of-freedom (SDOF) structure. Excitations are applied to the structure as a dynamic force and ground motion, respectively. The numerical studies showed that the control effectiveness of STMD is significantly superior to that of the passive TMD, regardless of the type of excitations.

  • PDF

The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.425-434
    • /
    • 2019
  • The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.

LQG Hybrid Vibration Control of a Structure Using TMD (Tuned Mass Damper(TMD)를 이용한 구조물의 Linear Quadratic Gaussian(LQG) 하이브리드 진동제어)

  • Lee, Jin-Ho;Lee, Sang-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.108-118
    • /
    • 2006
  • The purpose of this study is to investigate the effectiveness of a LQG Hybrid controller to suppress the earthquake disturbance for the building structure. The ground acceleration of N-S component of El-Centro earthquake was scaled to confirm that the building behaved within the elastic range. The tuned mass damper(TMD) on the top floor regulated by LQG algorithm was designed to control the floor displacements. The displacement responses of the hybrid control were compared with those obtained from an active control along with a passive control. The results showed that the LQG hybrid control used approximately 50% less input forces than an active control to satisfy the performance criteria.

Seismic Control of Tuned Mass Damper System with MDOF Sliding Mode Control Accounting for the Uncertainties (불확실성을 고려한 동조질량 감쇠기(TMD) 시스템의 다자유도 슬라이딩 모드 지진동 제어)

  • Lee, Jin Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.235-242
    • /
    • 2011
  • The control performance in active structural control system can be drastically deteriorated when the modeling errors and the uncertainties existing in the disturbances are disregarded in the designing stage. It can even throw the control system into an unstable phase, resulting in out of control against the seismic excitations. The purpose of the study is to investigate the control effectiveness of a non-linear control system called sliding mode controller(SMC) in cooperation with a Tuned Mass Damper subjected to the three seismic excitations selected from the FFT analysis. Even though the transient performance such as settling time and overshoot were deteriorated, the robustness against the system stability was appeared from SMC when the structural masses and stiffness perturbed within the range of ${\pm}30%$. SMC is a feasible technique for active structural control in cooperation with TMD against seismic disturbances, exhibiting robustness in perturbation of system stiffness and mass as well as uncertainties of the disturbances.

Application of MR Damper for Vibration Control of Floor Slab (바닥판 구조물의 진동제어를 위한 MR 감쇠기의 적용)

  • Kim, Gee-Cheol;Kwak, Chul-Seung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.59-67
    • /
    • 2006
  • A conventional passive TMD is only effective when it is tuned properly. In many practical applications, inevitable off-tuning of a TMD occurs because the mass in a building floor could change by moving furnishings, people gathering, etc. when TMDs are offtuned, TMDs their effectiveness is sharply reduced. Moreover, the off-tuned nTMDs can excessively amplify the vibration levels of the primary structures. This paper discusses the application of a new class of MR damper, for the reduction of floor vibrations due to machine and human movements. The STMD introduced uses a MR damper called to semi-active damper to achieve reduction in the floor vibration. Here, the STMD and the groundhook algorithm are applied to a single degree of freedom system representative of building floors. The performance or the STMD is compared to that or the equivalent passive TMD. In addition, the effects of off-tuning due to variations in the mass of the floor system. Comparison of the results demonstrates the efficiency and robustness or STMD with respect to equivalent TMD.

  • PDF

Fuzzy Hybrid Control of a Smart TMD for Reduction of Wind Responses in a Tall Building (초고층건물의 풍응답제어를 위한 스마트 TMD의 퍼지 하이브리드제어)

  • Kim, Han-Sang;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.135-144
    • /
    • 2009
  • Fuzzy hybrid control technique with a smart tuned mass damper(STMD) was proposed in this study for the suppression of wind-induced motion of a tall building. To develop the effective control algorithm for a STMD, skyhook and groundhook control algorithms were employed. Usually, skyhook controller can effectively reduce STMD motion and groundhook controller shows good control performance for the reduction of building responses. In this study, fuzzy hybrid controller, which can determine an optimal weighting factor for combining two controllers in real time, was developed to improve the control performance of conventional hybrid controller using weighted sum approach. A 76-story office building was used as an example structure to investigate the performance of the proposed controller. A magnetorheological(MR) damper was used to develop a STMD and the control performance of STMD was evaluated comparing with the passive and active TMD. The numerical studies show that the control effectiveness of a STMD is significantly superior to that of the conventional TMD. It is also shown that fuzzy hybrid controller can effectively adjust skyhook and groundhook control algorithms and reduce both responses of STMD and building.

New Vibration Control Approach of Adjacent Twin Structures using Connecting Tuned Mass Damper (연결 동조질량감쇠기를 이용한 인접한 쌍둥이 구조물의 새로운 진동제어)

  • Ok, Seung-Yong;Kim, Seung-Min
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.92-97
    • /
    • 2017
  • This study deals with new application method of the connecting tuned mass damper (CTMD) system for efficient vibration control of adjacent twin structures which have the same dynamic properties such as natural frequency and damping characteristics to each other. In the existing research, the vibration control of the twin structures has a limit to the application of the conventional damper-connection method of the twin structures. Due to the same frequency characteristics leading to the equally vibrating behaviors, it is impossible to apply the conventional connection method of the adjacent structures. In order to overcome these limitations induced by the symmetry of the dynamic characteristics, we propose a new CTMD-based control system that adopts the conventional connection configuration but unbalances the symmetric system by arranging the control device asymmetrically and then can finally achieve the efficient control performance. In order to demonstrate the applicability of the proposed system, numerical simulations of the optimally designed proposed system have been performed in comparison with the optimal design results of the existing independent single tuned mass damper (STMD) control system and the another optimal control system previously proposed by the same author, hereafter called CTMD-OsTMD. The comparative results of the control performances among STMD, CTMD-OsTMD and the proposed CTMD systems verified that the newly proposed control system can be a control-efficient and cost-effective system for vibration suppression of the two adjacent twin structures.

TMD parameters optimization in different-length suspension bridges using OTLBO algorithm under near and far-field ground motions

  • Alizadeh, Hamed;Lavasani, H.H.
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.625-635
    • /
    • 2020
  • Suspension bridges have the extended in plan configuration which makes them prone to dynamic events like earthquake. The longer span lead to more flexibility and slender of them. So, control systems seem to be essential in order to protect them against ground motion excitation. Tuned mass damper or in brief TMD is a passive control system that its efficiency is practically proven. Moreover, its parameters i.e. mass ratio, tuning frequency and damping ratio can be optimized in a manner providing the best performance. Meta-heuristic optimization algorithm is a powerful tool to gain this aim. In this study, TMD parameters are optimized in different-length suspension bridges in three distinct cases including 3, 4 and 5 TMDs by observer-teacher-learner based algorithm under a complete set of ground motions formed from both near-field and far-field instances. The Vincent Thomas, Tacoma Narrows and Golden Gate suspension bridges are selected for case studies as short, mean and long span ones, respectively. The results indicate that All cases of used TMDs result in response reduction and case 4TMD can be more suitable for bridges in near and far-field conditions.