• 제목/요약/키워드: TMCP Steel

검색결과 96건 처리시간 0.024초

일렉트로가스 용접부의 조직 및 인성에 관한 연구 (A Study on Microstructure and Thoughness of Electrogas Weldments)

  • 이해우;장태원;이윤수;석한길;강성원
    • Journal of Welding and Joining
    • /
    • 제14권1호
    • /
    • pp.68-74
    • /
    • 1996
  • The microstructure of HAZ and the mechanical properties in weldments such as hardness and toughness were studied for mild steel and AH36 grade TMCP steel, as increasing heat input with electrogas welding process. The results of this study can be summarized as follow: 1) In the HAZ of mild steel, the width of coarse grained zone was larger than that of the nomalized zone, however in the case of TMCP steel, the nomalized zone was wider than the coarse grained zone. 2) The grain size of HAZ become coarse with increasing heat input. And at the same heat input, the grain size of TMCP steel was more coarser than that of mild steel. 3) According to the change of heat input, the deviation of hardness values was not significant, and the maximum values of hardness was not in HAZ but in the weld metal. And the hardness values in root part was higher than in face part. 4) Even though the HAZ grain size of mild steel was larger than that of TMCP steel, the impact values for mild steel was higher than those for TMCP steel, and the impact values in face part was higher than those in root part.

  • PDF

선상가열한 TMCP 및 Normalizing 강재의 열변형에 관한 연구 (A study on the Thermal Deformation of Line Heated TMCP and Normalizing Steel)

  • 김정태;이광성;정효민;정한식
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.46-51
    • /
    • 2016
  • The TMCP steel has expanded in the marine structure during manufacturing process because of its excellent weld-ability and impact toughness. In the case of merchant ships, coverage of TMCP steel has been used widely on over DH36 Classifications material. The line heating process is applied to the outer surface of the steel plate for the shipbuilding. In this study, We compared between TMCP and normalizing steel for shipbuilding by analyzing some basic data through performing the natural cooling after the line heating. The experimental results show the angular misalignment changes in line heating. Heated surface of normalizing steel material expanded to $-0.3^{\circ}$ and reduced to $+0.2^{\circ}$ after cooling. And during cooling at $194^{\circ}C$ for 1,500 seconds, Angular Misalignment began from - direction to + direction, passed the critical point to the default at 2,200 seconds and did not take place any more at $103^{\circ}C$ after the 2,700 seconds. Angular Misalignment results of TMCP steels and Normalizing steel material show same angular misalignment lasted 1,200 seconds, TMCP steel has given more expansion and contraction angle which is $0.2^{\circ}$ than that of the Normalizing steel. Length difference between expansion and contraction is about 0.3 mm.

TMCP 고장력강재와 그 용접부의 저사이클피로특성에 관한 연구 (Low cycle fatigue behaviour of TMCP steel in as-received and welded states)

  • 김영식;한명수
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.46-57
    • /
    • 1990
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics, especially, in the welded state of this steel. In case of this steel, the softening zone by welding is generated in heat affected zone in contrast with the case of conventional normalized high strength steel. This softening zone is considered to play significant roles in low cycle fatigue fracture of the welded part of this steel. In this paper, the low cycle fatigue behaviors of TMCP steel were inspected in as-received and welded state using the smooth specimen. The fatigue life-time was seperately investigated on the basis of failure of the specimen and crack initiation which is detected by differential strain method. Moreover, the low cycle fatigue characteristics of TMCP steel were quantitatively compared with those of the conventional normalized steel of same strength level.

  • PDF

TMCP 강의 용접열영향부 인성에 관한 연구

  • 신민태;윤중근;김희진
    • Journal of Welding and Joining
    • /
    • 제4권3호
    • /
    • pp.43-49
    • /
    • 1986
  • Weldability of the TMCP steel manufactured by controlled rolling followed by accelerated cooling process was investigated. For comparison, two other steel plates produced by different manufacturing processes were selected; normalized and controlled rolled. Tandem submerged arc welding with both side one run technique was carried out. The results of this study can be summarized as follows; TMCP steel having the lowest carbon equivalent shows the best combination of mechanical properties, not only in the base metal but also in the heat affected zone. In the HAZ, the accelerated colling effect imarted on the trengthis releved by the weld thermal cycles, and thus the strength of the welded joint decrease substantially accompanied with the fracture in the HAZ. On the other hand, not only the softening but the fine microstructure can preserve the high toughness of TMCP steel in the HAZ.

  • PDF

DCPD 법을 이용한 TMCP 강의 부식피로수명 평가 (Evaluation of Corrosion Fatigue Life of TMCP Steel Using the DCPD Method)

  • 박진형;배동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.220-225
    • /
    • 2003
  • In order to develop a method of corrosion fatigue design and estimate reliability of TMCP steel using as the material of heavy industries and plants, its corrosion susceptibilities and corrosion fatigue life considering corrosion degradation were investigated. From the results, the corrosion characteristic of TMCP steel is very susceptible in 3.5wt.% NaCl solution. Its susceptibility was linearly increased with the solution temperature increase. The potential difference due to the crack growth behavior in $25^{\circ}C$, 3.5wt.% NaCl solution is very susceptible. And it was found that stress amplitude has a linear relationship with the critical potential. Therefore, it is expected that the corrosion fatigue life of TMCP steel can be nondestructively predicted using the DCPD method.

  • PDF

TMCP 강의 부식열화 및 부식피로강도 평가 (Evaluation of Corrosion Fatigue Strength and Corrosion Degradation of TMCP Steel)

  • 박진형;배동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.241-246
    • /
    • 2003
  • In order to develop a method of corrosion fatigue design and estimate reliability of TMCP steel using as the material of heavy industries and plants, its corrosion susceptibilities, corrosion fatigue strength, and determination of fatigue design criterion considering corrosion degradation were investigated. From the results, the corrosion characteristic of TMCP steel is very susceptible in 3.5wt.% NaCl solution. Its susceptibility was linearly increased with the solution temperature increase. The corrosion fatigue strength in $25${\circ}$, 3.5wt.% NaCl solution is very lower than that of in air. And also, it was decreased with the frequency decrease in the same environment. It is expected that the developed corrosion fatigue design method for TMCP steel is useful. However, it is necessary to verify its reliability for actual application.

  • PDF

TMCP강의 절단변형 (Cutting camber of TMCP steel plates)

  • 김희진;배강열
    • Journal of Welding and Joining
    • /
    • 제9권1호
    • /
    • pp.9-15
    • /
    • 1991
  • 국내에서는 1988년 하반기부터 50kg/mm$^{2}$급 TMCP강재가 생산되기 시작하여 국내 조선 업계도 TMCP강재의 사용이 가능하게 되었다. 이에 따라 국내수요가들은 국산 TMCP 강재의 원활한 사용을 위하여 생산자 주관으로 'TMCP강종개발위원회'를 주기적으로 개최하여 국산 TMCP강의 품질 평가와 함께 TMCP강의 단점 등을 여러 측면에서 검토, 보완하고 있다. 본 해설에서는 TMCP강재의 문제점들 중에서 선박용 강재로 사용하고자 할 때 가장 큰 문제점으로 제기되고 있는 절단변형에 대해 기술코자 한다.

  • PDF

TMCP 내화강재의 고온 내력 평가 연구 (Evaluation of Structural Stability of Fire Resistant Steel Produced by Thermo-Mechanical Control Process at High Temperature)

  • 권인규
    • 한국화재소방학회논문지
    • /
    • 제27권6호
    • /
    • pp.21-25
    • /
    • 2013
  • 대형화, 초고층 및 고스팬에 부응하기 위한 강재 기술개발의 노력으로 용접성능과 내진성능 그리고 내화성능이 부여된 새로운 강재인 Thermo-mechanical control process (TMCP) 내화강재가 개발되었다. TMCP 내화강재는 기존의 내화강재 생산과정 시 압연과 동시에 정밀한 열처리를 병행함으로 인장력과 용접성을 향상시킬 수 있는 새로운 기술인 TMCP 방법으로 개발되었으며, 화재와 같은 고온에서의 구조적 안전성에 관한 내력평가가 요구되었다. 따라서 본 연구에서는 고온 시 TMCP 내화강재의 내력평가를 목적으로 고온 시 항복강도, 탄성계수를 평가하고 각각에 대한 온도영역별 실험식을 제시하였으며, 이를 일반 내화강재의 고온 특성과 비교, 분석하였다. 또한 각각의 소재로 설정된 H형강 기둥부재를 대상으로 고온 시의 내력을 계산하여 그 안전성을 확인한 결과, TMCP 내화강재의 고온 시 내력특성은 일반강 내화강재의 고온 내력저하 특성보다 열위인 것으로 나타났다.

Thermal distortion analysis method for TMCP steel structures using shell element

  • Ha, Yun-sok;Rajesh, S.R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.95-100
    • /
    • 2009
  • As ships become larger, thicker and higher tensile steel plate are used in shipyard. Though special chemical compositions are required for high-tensile steels, recently they are made by the TMCP (Thermo-Mechanical control process) methodology. The increased Yield / Tensile strength of TMCP steels compared to the normalized steel of same composition are induced by suppressing the formation of Ferrite and Pearlite in favor of strong and tough Bainite while being transformed from Austenite. But this Bainite phase could be vanished by another additional thermal cycle like welding and heating. As thermal deformations are deeply related by yield stress of material, the study for prediction of plate deformation by heating should niflect the principle of TMCP steels. The present study is related to the development of an algorithm which could calculate inherent strain. In this algorithm, not only the mechanical principles of thermal deformations, but also the initial portion of Bainite is considered when calculating inherent strain. Distortion analysis results by these values showed good agreements with experimental results for normalized steels and TMCP steels during welding and heating. This algorithm has also been used to create an inherent strain database of steels in Class rule.

실드 수중용접의 교계에 관한 연구 (Study on Effect of Underwater Shield Welding)

  • 김민남;오세규;서강태;박정배
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.81-87
    • /
    • 1991
  • In this paper, an attempt has been taken for improving the weldability of wer welds of TMCP steel plate by shielding around weld arc surroundings. The principal results of this experimental investigation can be summarized as follows: 1) The cooling rates resulting from wet wlds with the developed electrode on TMCP steel plate could be lower than that of the non-shieled wet welds. 2) The metallurgical characteristics in umderwater wet welds of TMCP steel plate and the developed electrode could be improved by shielding around weld arc surroundings.

  • PDF