• Title/Summary/Keyword: TLRs

Search Result 91, Processing Time 0.029 seconds

Expression of Toll-like Receptor 9 Increases with Progression of Cervical Neoplasia in Tunisian Women - A Comparative Analysis of Condyloma, Cervical Intraepithelial Neoplasia and Invasive Carcinoma

  • Fehri, Emna;Ennaifer, Emna;Ardhaoui, Monia;Ouerhani, Kaouther;Laassili, Thalja;Rhouma, Rahima Bel Haj;Guizani, Ikram;Boubaker, Samir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6145-6150
    • /
    • 2014
  • Toll-like receptors (TLRs) are expressed in immune and tumor cells and recognize pathogen-associated molecular patterns. Cervical cancer (CC) is directly linked to a persistent infection with high risk human papillomaviruses (HR-HPVs) and could be associated with alteration of TLRs expression. TLR9 plays a key role in the recognition of DNA viruses and better understanding of this signaling pathway in CC could lead to the development of novel immunotherapeutic approaches. The present study was undertaken to determine the level of TLR9 expression in cervical neoplasias from Tunisian women with 53 formalin-fixed and paraffin-embedded specimens, including 22 samples of invasive cervical carcinoma (ICC), 18 of cervical intraepithelial neoplasia (CIN), 7 of condyloma and 6 normal cervical tissues as control cases. Quantification of TLR9 expression was based on scoring four degrees of extent and intensity of immunostaining in squamous epithelial cells. TLR9 expression gradually increased from CIN1 (80% weak intensity) to CIN2 (83.3% moderate), CIN3 (57.1% strong) and ICC (100% very strong). It was absent in normal cervical tissue and weak in 71.4% of condyloma. The mean scores of TLR9 expression were compared using the Kruskall-Wallis test and there was a statistical significance between normal tissue and condyloma as well as between condyloma, CINs and ICC. These results suggest that TLR9 may play a role in progression of cervical neoplasia in Tunisian patients and could represent a useful biomarker for malignant transformation of cervical squamous cells.

Lack of Association of Three Common Polymorphisms in Toll-like receptors (TLRs), TLR2+597T>C, +1350C>T and Arg753Gln with Cancer Risk: a Meta-analysis

  • Yang, Xin;Wang, Xiao-Xiao;Qiu, Man-Tang;Hu, Jing-Wen;Yin, Rong;Xu, Lin;Zhang, Qin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5871-5876
    • /
    • 2013
  • Background: Single nucleotide polymorphisms (SNPs) occurring in Toll-like receptors (TLRs) may contribute to cancer risk. Many polymorphisms of TLR2 have been studied for associations, but the findings are conflicting. Methodology/Principal Findings: We performed a meta-analysis of 14 studies to confirm the association between TLR2+597T>C (rs3804099), +1350C>T (rs3804100) and Arg753Gln (rs5743708) polymorphisms and cancer risk. Odds ratio (OR) and 95% confidence intervals (95% CI) were used to assess the strength of associations. There was no significant association between TLR2+597T>C and cancer risk in the codominant models (CC vs. TT: OR = 1.01, 95%CI = 0.86-1.17, $P_{heterogeneity}=0.148$; CT vs. TT: OR = 0.92, 95%CI = 0.69-1.23, $P_{heterogeneity}$ < 0.001), the recessive model (CC vs. CT+TT: OR = 0.86, 95%CI = 0.67-1.10, $P_{heterogeneity}=0.007$), the dominant model (CC+CT vs. TT: OR = 0.93, 95%CI = 0.76-1.15, $P_{heterogeneity}=0.001$) and the allele model (C vs. T: OR =0.93, 95%CI = 0.81-1.08, $P_{heterogeneity}=0.019$). Similarly, no significant associations between TLR2+1350C>T, Arg753Gln polymorphisms and cancer risk were found. However, in the sub-group analysis of ethnicities, the trend of pooled ORs in Asians was opposite to Caucasians. Conclusions: The present meta-analysis suggests that TLR2+597T>C (rs3804099), +1350C>T (rs3804100) and Arg753Gln (rs5743708) polymorphisms are not associated with cancer risk.

Suppression of the Expression of Cyclooxygenase-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists by 6-Shogaol (6-Shogaol의 Toll-like receptor 2, 3, 4 agonists에 의해서 유도된 cyclooxygenase-2 발현 억제)

  • Kim, Jeom-Ji;An, Sang-Il;Lee, Jeon-Su;Yun, Sae-Mi;Lee, Mi-Yeong;Yun, Hyeong-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.332-336
    • /
    • 2008
  • Ginger is widely used as a traditional herbal medicine. Both ginger and its extracts have been used to treat many chronic inflammatory conditions via the inhibition of nuclear factor-kappa B (NF-${\kappa}B$) activation, which results in the suppression of cyclooxygenase-2 (COX-2) expression. However, the mechanisms as to how ginger extracts mediate their health effects are largely unknown. Toll-like receptors (TLRs) trigger anti-microbial innate immune responses, recognizing conserved microbial structural molecules that are known as pathogen-associated molecular patterns. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$. The activation of NF- ${\kappa}B$ leads to the induction of inflammatory gene products, including cytokines and COX-2. This study reports the biochemical evidence that 6-shogaol, an active compound in ginger, inhibits NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Furthermore, 6-shogaol inhibited NF-${\kappa}B$ activation induced by the following downstream signaling components of the TLRs: MyD88, $IKK{\beta}$, and p65. These results imply that ginger can modulate immune responses that could potentially modify the risk of many chronic inflammatory diseases.

Expression of Toll-like Receptors, Pro-, and Anti-inflammatory Cytokines in Relation to Gut Microbiota in Irritable Bowel Syndrome: The Evidence for Its Micro-organic Basis

  • Shukla, Ratnakar;Ghoshal, Ujjala;Ranjan, Prabhat;Ghoshal, Uday C
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.628-642
    • /
    • 2018
  • Background/Aims A Subset of patients with irritable bowel syndrome (IBS) may have mild inflammation due to immune activation. Toll-like receptors (TLRs) and cytokines may cause intestinal inflammation. We studied their expression in relation to gut microbiota. Methods Expression of TLRs and cytokines was assessed in 47 IBS patients (Rome III) and 25 controls using quantitative real-time polymerase chain reaction. Immunohistochemistry was further performed to confirm the expression of TLR-4 and TLR-5. Results Of 47 patients with IBS, 20 had constipation (IBS-C), 20 diarrhea (IBS-D), and 7 unclassified (IBS-U). The mRNA levels of TLR-4 and TLR-5 were up-regulated in IBS patients than controls (P = 0.013 and P < 0.001, respectively). Expression of TLR-4 and TLR-5 at protein level was 4.2-folds and 6.6-folds higher in IBS-D than controls. The mRNA levels of IL-6 (P = 0.003), C-X-C motif chemokine ligand 11 (CXCL-11) (P < 0.001) and C-X-C motif chemokine receptor 3 (CXCR-3) (P < 0.001) were higher among IBS patients than controls. Expression of IL-6 (P = 0.002), CXCL-11 (P < 0.001), and CXCR-3 (P < 0.001) were up-regulated and IL-10 (P = 0.012) was down-regulated in IBS-D patients than controls. Positive correlation was seen between TLR-4 and IL-6 (P = 0.043), CXCR-3, and CXCL-11 (P = 0.047), and IL-6 and CXCR-3 (P = 0.003). Stool frequency per week showed positive correlation with mRNA levels of TLR-4 (P = 0.016) and CXCR-3 (P = 0.005), but inversely correlated with IL-10 (P = 0.002). Copy number of Lactobacillus (P = 0.045) and Bifidobacterium (P = 0.011) showed correlation with IL-10 in IBS-C, while Gram-positive (P = 0.031) and Gram-negative bacteria (P = 0.010) showed correlation with CXCL-11 in IBS-D patients. Conclusions Altered immune activation in response to dysbiotic microbiota may promote intestinal inflammation in a subset of patients with IBS.

Triptolide Suppresses the Expression of Cyclooxygenase-2 Induced by Toll-Like Receptor 3 and 4 Agonists

  • Gu, Gyo-Jeong;Eom, Sang-Hoon;Min, In Soon;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Triptolide (TP), a natural component of Tripterygium wilfordii Hook. F, has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that TP inhibits the NF-${\kappa}B$ activation induced by polyriboinosinic polyribocytidylic acid (Poly[I:C], TLR3 agonist) and lipopolysaccharide (LPS, TLR4 agonist). TP also inhibits COX-2 expression induced by Poly[I:C] and LPS. These results suggest that TP can modulate the immune responses regulated by TLR3 and TLR4 signaling pathways.

(E)-1-(2-(2-nitrovinyl)phenyl)pyrrolidine inhibits Inducible Nitric Oxide Synthase Expression in RAW264.7 Macrophages Stimulated with Lipopolysaccharide

  • Gu, Gyo-Jeong;Eom, Sang-Hoon;Suh, Chang Won;Koh, Kwang Oh;Kim, Dae Young;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.168-172
    • /
    • 2013
  • Toll-like receptors (TLRs) play an important role for host defense against invading pathogens. TLR4 has been identified as the receptor for lipopolysaccharide (LPS), which is a cell wall component of gram-negative bacteria. The activation of TLR4 signaling by LPS leads to the activation of NF-${\kappa}B$ and the expression of pro-inflammatory gene products such as cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). To evaluate the therapeutic potential of (E)-1-(2-(2-nitrovinyl)phenyl)pyrrolidine (NVPP), previously synthesized in our laboratory, NF-${\kappa}B$ activation and iNOS and COX-2 expression induced by LPS were examined. NVPP inhibited the activation of NF-${\kappa}B$ induced by LPS. NVPP also suppressed the iNOS expression induced by LPS but it did not suppress COX-2 expression induced by LPS. These results suggest that NVPP has the specific mechanism for anti-inflammatory responses.

Contribution of TLR2 to the Initiation of Ganglioside-triggered Inflammatory Signaling

  • Yoon, Hee Jung;Jeon, Sae Bom;Suk, Kyoungho;Choi, Dong-Kug;Hong, Young-Joon;Park, Eun Jung
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.99-104
    • /
    • 2008
  • Gangliosides, sialic acid-containing glycosphingolipids, are implicated in many neuronal diseases, but the precise molecular mechanisms underlying their pathological activities are poorly understood. Here we report that TLR2 participates in the initiation of ganglioside-triggered inflammatory signaling responses. Using FACS analysis and immunofluorescence microscopy, we found that gangliosides rapidly enhanced the cell surface expression of TLR2 in microglia, while reducing that of TLR4. The ganglioside-dependent increase of TLR2 expression was also observed at the messenger and protein levels. We also showed that gangliosides stimulate the interaction of TLR2 with Myd88, an adaptor for TLRs, and obtained evidence that lipid raft formation is closely associated with the ganglioside-induced activation of TLR2 and subsequent inflammatory signaling. These results collectively suggest that TLR2 contributes to the ability of gangliosides to cause inflammatory conditions in the brain.

TRIF Deficiency does not Affect Severity of Ovalbumin-induced Airway Inflammation in Mice

  • Kim, Tae-Hyoun;Kim, Dong-Jae;Park, Jae-Hak;Park, Jong-Hwan
    • IMMUNE NETWORK
    • /
    • v.14 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Allergic asthma is a chronic pulmonary inflammatory disease characterized by reversible airway obstruction, hyperresponsiveness and eosinophils infiltration. Toll-like receptors (TLRs) signaling are closely associated with asthma and have emerged as a novel therapeutic target in allergic disease. The functions of TLR3 and TLR4 in allergic airway inflammation have been studied; however, the precise role of TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF), the adaptor molecule for both TLR3 and TLR4, is not yet fully understood. To investigate this, we developed a mouse model of OVA-induced allergic airway inflammation and compared the severity of allergic airway inflammation in WT and $TRIF^-/^-$ mice. Histopathological assessment revealed that the severity of inflammation in airway inflammation in TRIF-deficient mice was comparable to that in WT mice. The total number of cells recovered from bronchoalveolar lavage fluid did not differ between WT and TRIF-deficient mice. Moreover, TRIF deficiency did not affect Th1 and Th2 cytokine production in lung tissue nor the level of serum OVA-specific IgE, $IgG_1$ and $IgG_{2c}$. These findings suggest that TRIF-mediated signaling may not be critical for the development of allergic airway inflammation.

Nucleotide-Binding Domain and Leucine-Rich Repeat Containing Receptor (NLR) and its Signaling Pathway

  • Park, Sangwook;Gwon, Sun-Yeong;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.173-179
    • /
    • 2013
  • Since the identification and characterization of toll-like receptors (TLR) in Drosophila, numerous scientific studies have examined the role of TLRs in host innate immunity. Recent studies have suggested a convergence of the nuclear factor kappa B (NF-${\kappa}B$) signaling and cytokine production regulated by the cytosolic elicitor known as NLRs (nucleotide-binding domain and leucine-rich repeat containing domain receptors) as a key modulator in inflammatory diseases. Among the NLRs, NOD1 and NOD2 have been intensively investigated for its role in inflammatory bowel disease (IBD). On the other hand, NLRs such as NLRP3, NLRP1, and NLRC4 (also known as IPAF) have been identified to form the inflammasome to activate downstream signaling molecules in response to pathogenic microbes. There is evidence to suggest that substantial crosstalk exists for the TLR and NLR signaling pathway in response to pathogen associated molecular pattern (PAMP). However, the substrate and the mechanistic role of NLRs are largely unknown in innate immune response. Understanding the signaling mechanisms by which NLRs recognize PAMP and other danger signals will shed light on elucidating the pathogenesis of various human inflammatory diseases such as IBD.

Innate immune recognition of respiratory syncytial virus infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.184-191
    • /
    • 2014
  • Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in infants and young children. Severe clinical manifestation of RSV infection is a bronchiolitis, which is common in infants under six months of age. Recently, RSV has been recognized as an important cause of respiratory infection in older populations with cardiovascular morbidity or immunocompromised patients. However, neither a vaccine nor an effective antiviral therapy is currently available. Moreover, the interaction between the host immune system and the RSV pathogen during an infection is not well understood. The innate immune system recognizes RSV through multiple mechanisms. The first innate immune RSV detectors are the pattern recognition receptors (PRRs), including toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-biding oligomerization domain (NOD)-like receptors (NLRs). The following is a review of studies associated with various PRRs that are responsible for RSV virion recognition and subsequent induction of the antiviral immune response during RSV infection.