• 제목/요약/키워드: TLD측정

Search Result 164, Processing Time 0.034 seconds

Measurement of Absorbed Dose for High Energy Electron using $CaSO_4$:Tm-PTFE TLD ($CaSO_4$:Tm-PTFE TLD를 이용한 고에너지 전자선의 흡수선량 측정)

  • Park, Myeong-Hwan;Kim, Do-Sung;Doh, Sih-Hong;Kim, Wan;Kang, Hee-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.314-319
    • /
    • 2001
  • In this study, the highly sensitive $CaSO_4$:Tm-PTFE TLDs has been fabricated for the purpose of measurement of high energy electron. $CaSO_4$:Tm phosphor powder was mixed with polytetrafluoroethylene(PTFE) powder and moulded in a disk type(diameter 8.5mm, thickness $90mg/cm^2$) by cold pressing. The batch uniformities were average deviation 3.1%. The TLDs were applied to measurement of absorbed dose distribution for high energy electron, the ranges were determined to be $R_{100}=14.5mm$, $R_{50}=24.1mm$ and $R_p=31.8mm$, respectively. The beam flatness were 4.5% as the variation of dose relative to the central axis over the central 80% of the field size at a maximum dose depth in a plane perpendicular to the central axis.

  • PDF

전신방사선조사(TBI)시 다이오드측정기(Diode detector) 및 열형광선량계(TLD)를 이용하여 측정한 골조직 선량감쇠에 대한 고찰

  • 임현실;이정진;장인기;김완선
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.29 no.1
    • /
    • pp.6-11
    • /
    • 2003
  • 목적 : 전신방사선조사(TBI)시 균등한 선량을 조사할 목적으로 사용되는 각 신체부위별 보상체(compensator) 두께의 결정은 열형광선량계(TLD)를 이용하여 표면선량(surface dose)을 측정하고, 심부선량(depth dose)으로 환산하는 방법을 주로 이용한다. 그러나 이와 같은 방법은 골(bone) 조직에 대한 선량감쇠(dose attenuation)의 영향이 고려되지 않아 신체중심부에서의 정확한 심부선량을 알 수가 없다. 이에 본 연구

  • PDF

Evaluation of Usability and Radiation Dose Measurement Using Personal Radiation Exposure Dosimeter (방사선 개인피폭선량계를 이용한 피폭선량 측정 및 유용성 평가)

  • Kang, In-Seog;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.864-870
    • /
    • 2014
  • To propose a basis for the selection of personal dosimeters to measure radiation dose administration of radiation workers as a way to evaluate the usefulness dosimeter. For the dosimetry of the radiation workers 2012, during 1 year, 30 were radiation workers to measure personal dose. By personal exposure is measured cumulative dose, is investigated the performance of the TLD, PLD, OSLD. And comparing the measured value of each dosimeter dose and analyzed. Medical institutions, inspection work and quarterly confirmed the cumulative exposure dose of radiation workers. Using DAP and Ion-Chamber, to measure to compare TLD, PLD, OSLD dosimeter performance. A comparison of the directly through the X-ray dosimeter and The absolute value of the Ion-Chamber, OSLD more similar than in the TLD and PLD showed the dose values so the excellent ability to measure the results. Also in radiation generating area dose of radiation workers is higher than that in OSLD. Consequently, in terms of the individual exposure management OSLD is appropriated and beneficial than others.

Evaluation of Skin Dose of Intensity Modulated Radiation Therapy in Breast Cancer Patients (유방암환자의 세기조절방사선치료에서 피부선량 평가)

  • Kim, Sung-Kyu;Kim, Myung-Se;Yun, Sang-Mo
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.167-171
    • /
    • 2007
  • In the case of radiotherapy following breast conservation therapy for breast cancer patients, the characteristic of skin dose was investigated in the treatment of intensity modulated radiation therapy (IMRT) for breast cancer patients by comparing and analysing entrance skin dose irradiated during radiotherapy using tangential technique radiotherpy, and IMRT. The calculation dose irradiated to breast skin was compared with TLD measurement dose in treatment planning by performing the two methods of radiotherapy using tangential technique, and IMRT in treatment planning equipment. The skin absorbed dose was measured to pass a nipple by spacing of 1 cm distance from center to edge of body. In the radiotherapy of tangential technique, for the irradiation of 180 cGy to PTV, the calculation dose was ranged from 103.5 cGy to 155.2 cGy, measurement dose was ranged from 107.5 cGy to 156.2 cGy, and skin dose in the center was maximum 1.45 times more irradiated than that in the edge. In the IMRT, for the irradiation of 180 cGy to PTV, the calculation dose was ranged 9.8 cGy at 80.2 cGy, measurement dose was ranged 8.9 cGy at 77.2 cGy, and skin dose in the center was maximum 0.23 times less irradiated than that in the edge. IMRT was more effective for skin radiation risks because radiation dose irradiated to skin in IMRT was much less than that in radiotherapy of tangential field technique.

  • PDF

The Roles of Gold Plate (140${\mu}{\textrm}{m}$) Loaded on TLD-100 Chips in the High Energy Radiation Beams (고에너지 광자선속에서 TLD-100 chip 위에 있는 금박막(140 ${\mu}{\textrm}{m}$) 역할)

  • Vahc, Young-Woo;Park, Kyung Ran.
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.51-60
    • /
    • 1995
  • Lithium Fluoride (LiF; TLD-100) crystal chips are normally used as thermolu minescence dosimeters (abbreviated as NC-100) for estimating the absorbed dose to the skin of a patient or in a solid water phantom undergoing radiotherapy with megavoltage photon (6 and 15MV) beams. In general, investigation has revealed a reduction in the sensitivity of NC-100 chips after many runs through heating cycles. A TLD-100 chip laminated with gold plate (140${\mu}{\textrm}{m}$) on the upper surface layer of its face toward the photon beam (abbreviated as GC-100) has properties different from that of a NC-100 chip activated by incident photons and contaminant electrons with various lower energies coming from the gantry head and air. Activation of the valence band electrons of GC-100 chips by incident photons, positrons and electrons-which come from the gold plate by mainly pair production process and partly from Compton scattering-results in more enhanced signal intensity, higher response per monitor unit, as well as a good linearity with monitor units and independence of dose rate. Since the electron beams (6 and 15 MeV) do not have the probability of pair production process with gold plate, there is only a small difference (about a 3.3% increase for 15 MeV) in the signal gaps in the TL readout for electron beams between GC- and NC-100 chips. The 3.3% increase is entirely due to the buildup caused by the 140 m gold plate. The sensitivity of GC-100 chips is much more susceptible to high energy photon beams than electron one because of pair production. The interaction of high energy photon with a material of high atomic number, such as the good plate in this case, results in a considerably significant probability of pair production. The gold plate on the NC-100 chips acts as not only an intensifier of their signals but also acts as a filter of contaminant electrons in therapeutic high energy X-ray beams.

  • PDF

Effectiveness of a Custom-made Multi Purpose Brachytherapy Phantom (자체 제작한 근접방사선치료용 다목적 팬텀의 유용성 평가)

  • Jang, In-Gi;Lee, Jin-Joung;Kim, Wan-Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.119-125
    • /
    • 2006
  • Purpose: To measure the dose for dose optimization at the reference point (A, B) and the critical organ with multi Purpose brachytherapy phantom (MPBP). For this wort the MPBP was custom made, and designed to reconstruct the treatment applicator using multi function applicator (MFA) in the same way as the treatment of patient. Materials and Methods: Dose measurements were made at the reference points (A, B) and the bladder with thermoluminescence dosimeter (TLD) for four patients with tandem and ovoid of uterine cervix cancer using the phantom. In Phantom, Total 20 times of the measurements were made with 5 times a patient. Results: The results of TLD measurements in MPBP phantom showed the relative error ranging from -3.2% to 3.8% at A point, and -1.4% to 4% at B point and 1.3% to 7.15% at the bladder of reference point. Conclusion: The reproducibility of dose measurement under the same condition as the treatment could be achieved using the custom-made MFA in phantom and the dose at the reference point (A, B) and bladder could be analyzed accurately. The measured dose acquired in MPBP can apply for the dose optimization.

  • PDF

Gamma-ray Dose Measurements in a Human Phantom Using Thermoluminescent Dosimeter

  • Yoo, Young-Soo;Lee, Hyun-Duk
    • Nuclear Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.239-247
    • /
    • 1974
  • A human phantom of polyethylene has been designed and sculptured for studying the effective radiation safety control. The phantom has the approximate size of the Korean adult and was sliced into thirty-five transverse slabs, 2.5 cm thick, The relative dose at the specified position was determined from the exposure that a TLD badge worn on the surface of the phantom body received from external ${\gamma}$-ray. The variation of the exposure as a function of depth in the phantom was measured for uncollimated ${\gamma}$-ray using TLD rods, and also isodose curves were obtained for the anatomical cross-section of the critical organs of the body. To simulate radiation exposure condition in the nuclear facility, measurements were made for given angles of incident ${\gamma}$-ray. The front to back attenuation factor for human phantom of thickness 20 cm was 0.439 for Cs$^{137}$ ${\gamma}$-ray which is in reasonable agreement with the published data.

  • PDF

Study on The Quantification of Cosmic-Ray Component Contributed to Natural Background Radiation Exposure (자연 방사선량 중 우주선 기여 성분 정량 연구)

  • Jun, Jae-Shik;Oh, Hi-Peel;Ha, Chung-Woo;Oh, Heon-Jin;Kang, In-Seon
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.9-20
    • /
    • 1988
  • In order to quantify the contribution of cosmic-ray ionizing component to the dose given by natural background radiation, a series of measurement has been carried out using LiF TLDs for about one and a half years on quarterly basis. Three different types of LiF TLDs namely, chips and PTFE based disks of $^{7}LiF$, and the same disks of $^{6}LiF$ for identifying possible contribution of neutron component were used. Measurements were made by placing badge-incased TLDs in a lead castle of 10 to 15cm thick installed in a room on the third floor of a four-story building in CNU Daedeok campus for 5 cycles of 90 days. For comparison a series of spectrometric study was also performed for the energy region over 3MeV using a 3'${\phi}\;{\times}\;3$'NaI(Tl) scintillation detector in association with an MCA of 1024 channels, and it was found that the data obtained by the TLDs placed in the lead castle indicate 75% of the dose given by outdoor cosmic-ray component. The results obtained by the TLDs through correction for shielding loss show that the outdoor dose contribution of ionizing component of cosmic rays at this campus is $34.3{\pm}1.1nGy/h$ which satisfactorily agrees with that expected for our particular location of measurement.

  • PDF

Experimental Study on the Determination of Absorbed dose Index (흡수선량지수결정(吸收線量指數決定)에 관한 실험적(實驗的) 연구(硏究))

  • Jun, Jae-Shik;Rho, Chae-Shik;Ro, Seung-Gy;Ha, Chung-Woo;Yoo, Young-Soo;Lee, Hyun-Duk
    • Journal of Radiation Protection and Research
    • /
    • v.7 no.1
    • /
    • pp.34-48
    • /
    • 1982
  • The prime purpose of this study is to realize an index quantity, absorbed dose index, defined by the ICRU for the characterization of ambient radiation level at any location for the purpose of radiation protection. The experiment has been designed to be carried out in two phases, namely, preliminary and main experiment. In the primary study a 30cm diameter sphere of polyethylene was used, while in the main experiment that of tissue equivalent material was fabricated and used. Both experiments were performed in the gamma-ray fields of $^{137}Cs\;and\;^{60}Co$, and in a neutron beam of thermal column of the TRIGA MARK-II research reactor. In the measurement of gamma-ray absorbed dose TLD-700 $(^{7}LiF)$ chips were used, and for the neutron dose both Au activation foils and TLD chips (TLD-600 $(^{6}LiF)$ and TLD-700 for the discrimination of gamma-ray contribution) were used. Theoretical assessment of the absorbed dose in the sphere phantom has been carried out in accordance with the Ehrlich's idea that deduced on the basis of Burlin's cavity theory in the case of gamma-ray irradiation. For the analysis of neutron dose fluence-KERMA rate conversion method was used. The explanation on the dose assessment is given in detail. Results obtained were numerically and statistically analyzed and the depth dose distributions are presented in the graphic forms with normalized values. In the concluding remarks, the possibility and difficulty of realizing the index quantity, including questions and problems to be solved are mentioned.

  • PDF

Evaluation the Output Dose of Linear Accelerator Photon Beams by Blind Test with Dose Characteristics of LiF:Mg,Cu,P TLD (LiF:Mg,Cu,P 열형광선량계의 선량특성을 이용한 눈가림법에 의한 출력선량 평가)

  • Choi, Tae-Jin;Lee, Ho-Joon;Yie, Ji-Won;Oh, Young-Gi;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.308-316
    • /
    • 2009
  • To achieve the accurate evaluation of given absorbed dose from output dose of linear accelerator photon beam through investigate the characteristics of LiF:Mg,Cu,P TLD powder. This experimental TL phosphor is performed with a commercial LiF:Mg,Cu,P powder (Supplied by PTW) and TL reader (LTM, France). The TLD was exposed to 6 MV X rays of linear accelerator photon beam with range 15 to 800 cGy in blind dose at two hospitals. The dose evaluation of TLD was through the experimental algorithms which were dose dependency, dose rate dependency, fading and powder weight dependency. The glow curve has shown the three peaks which are 110, 183 and 232 degrees of heating temperature and the main dosimetric peak showed highest TL response at 232 high temperature. In this experiments, the LiF:Mg,Cu,P phosphor has shown the 2.5 eV of electron trap energy with a second order. This experiments guided the dose evaluation accuracy is within 1% +2.58% of discrepancy. The TLD powder of LiF:Mg,Cu,P was analyzed to dosimetric characterists of electron captured energy and order by glow shape, and dose-TL response curve guided the accuracy within 1.0+2.58% of output dose discrepancy.

  • PDF