• 제목/요약/키워드: TLCD

검색결과 42건 처리시간 0.022초

저주파수 하의 TLCD 시스템의 오리피스 형상 효과 (Orifice shape effect of the TLCD system under a low frequency)

  • 임희창
    • 한국가시화정보학회지
    • /
    • 제12권1호
    • /
    • pp.30-34
    • /
    • 2014
  • Bluff bodies under the external periodic force vibrate at their own natural or forced frequency. Rectangular bodies or similar structures such as high-rise towers and apartments, and recently a well-cited application - offshore floating bodies, usually needs to reduce these vibrations for stability and the mode control. Therefore, this study is aiming to reduce or control the vibration of a structure by a passive control method, i.e., TLCD (Tuned Liquid Column Damper). Controlling a moving body with a TLCD based on a variety of the orifice shape has been preliminary studied. In order to get a proper control, an optimized study is made on the design of the orifice shape, which has internal plates with the holes. The results show the force acting on the body due to the periodic movement highly depends on the number of holes on the plate and the height of the water level. Therefore, the optimum shape of the orifice and the height of the water level should be confirmed by a series of experiments.

Optimal damping ratio of TLCDs

  • Chen, Yung-Hsiang;Chao, Chen-Chi
    • Structural Engineering and Mechanics
    • /
    • 제9권3호
    • /
    • pp.227-240
    • /
    • 2000
  • The study of the optimal damping ratio of a tuned liquid-column damper (or TLCD) attached to a single-degree-of-freedom system is presented. The tuned liquid-column damper is composed of two vertical columns connected by a horizontal section in the bottom and partially filled with water. The ratio of the length of the horizontal section to the effective wetted length of a TLCD considered as another important parameter is also presented for investigation. A simple pendulum-like model test is conducted to simulate a long-period motion in order to prove the effectiveness of TLCD for vibrational control. Comparisons of the experimental and analytic results of the TLCD, TLD (tuned-liquid damper), and TMD (tuned-mass damper) are included for discussion.

실물크기 구조물에 설치된 동조액체질량감쇠기의 성능실험 (Performance Test of a Tuned Liquid Mass Damper installed in a Real-Scaled Structure)

  • 허재성;박은천;이성경;이상현;김홍진;조지성;조봉호;주석준;민경원
    • 한국전산구조공학회논문집
    • /
    • 제21권2호
    • /
    • pp.161-168
    • /
    • 2008
  • 본 연구에서는 하나의 제어장치로 서로 직교하는 2방향의 건물응답을 동시에 제어할 수 있는 동조액체질량감쇠기(Tuned Liquid Mass Damper; TLMD)를 제안하고 제어성능을 실험적으로 검증하였다. 본 연구에서 제안된 TLMD는 한 방향으로는 동조액체기둥감쇠기(Tuned Liquid Column Damper; TLCD) 내부에 채워진 액체의 운동에너지를 이용하여 구조물의 응답을 제어하게 된다. 그리고, 다른 한 방향 즉 TLCD의 직각 방향으로는 LM guide(linear motion guide) 위에 놓인 TLCD 수조와 내부의 액체의 질량을 이용하여 동조질량감쇠기(Tuned Mass Damper; TMD)로 거동하게 함으로써 구조물의 응답을 감소시킨다. 이와 같은 TLMD의 양방향 독립거동 특성을 증명하기 위해 실물크기의 구조물에 설치하여 강제진동실험을 수행하였다. 실험결과, 양방향 모두 대상 구조물의 응답을 감소시키는 것을 확인하여 제안된 TLMD의 효용성을 검증하였다.

TLCD와 TSD를 이용한 새로운 형태의 양방향 감쇠기 설계변수 (Design Parameter of a New Type Bi-directional Damper Using a Tuned Liquid Column Damper and a Tuned Sloshing Damper)

  • 민경원
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.850-856
    • /
    • 2009
  • A new type bi-directional damper using a tuned liquid column damper(TLCD) and a tuned sloshing damper(TSD) is introduced in this study. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with one damper. One of objectives of this study is to derive analytical dynamics to investigate coupled effects due to TLCD and TSD. Another objective is to address the effect of coupled control force due to TLCD and TSD on the dynamic characteristic of the damper based on analytical dynamics. Shaking table test is undertaken to experimentally grasp dynamic characteristics of the damper under white noise excitation. Its dynamic characteristic is expressed by the transfer function from the shaking table acceleration to the control force generated from the damper. Finally, its design parameters are identified based on the coupled dynamics, which include the mass ratio of horizontal liquid column to total liquid for a TLCD, the participation factor of the fundamental liquid sloshing for a TSD and damping ratio for both cases.

Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD

  • Lee, Hsien Hua;Juang, H.H.
    • Smart Structures and Systems
    • /
    • 제9권1호
    • /
    • pp.71-104
    • /
    • 2012
  • In this research, a typical tension-leg type of floating platform incorporated with an innovative concept of underwater tuned liquid column damper system (UWTLCD) is studied. The purpose of this study is to improve the structural safety by means of mitigating the wave induced vibrations and stresses on the offshore floating Tension Leg Platform (TLP) system. Based on some encouraging results from a previous study, where a Tuned Liquid Column Damper (TLCD) system was employed in a floating platform system to reduce the vibration of the main structure, in this study, the traditional TLCD system was modified and tested. Firstly, the orifice-tube was replaced with a smaller horizontal tube and secondly, the TLCD system was combined into the pontoon system under the platform. The modification creates a multipurpose pontoon system associated with vibration mitigation function. On the other hand, the UWTLCD that is installed underwater instead would not occupy any additional space on the platform and yet provide buoyancy to the system. Experimental tests were performed for the mitigation effect and parameters besides the wave conditions, such as pontoon draught and liquid-length in the TLCD were taken into account in the test. It is found that the accurately tuned UWTLCD system could effectively reduce the dynamic response of the offshore platform system in terms of both the vibration amplitude and tensile forces measured in the mooring tethers.

확률적(確率的) 방법(方法)에 의한 TLCD 감쇠기(減衰器)의 지진(地震)에 대한 성능(性能) 평가(評價) (PROBABILISTIC SEISMIC PERFORMANCE EVALUATION OF TUNED LIQUID COLUMN DAMPERS)

  • 한봉구
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.115-120
    • /
    • 1996
  • 유연구조물(柔軟構造物)의 수동제어(受動制御) 시스템인 TLCD 감쇠기(減衰器)의 지진(地震)에 대한 성능(性能) 평가(評價)를 확률적(確率的) 랜덤 진동(振動) 해석방법(解析方法)을 이용하여 연구하였다. 대표적(代表的) 지진운동(地震運動)은 확률적(確率的) 비정상(非正常) 추계과정방법(推計過程方法)을 이용(利用)하였으며, TLCD 감쇠기(減衰器)의 비선형(非線型) 감쇠력(減衰力)에 대한 계산(計算)은 등가선형기법(等價線形技法)을 이용(利用)하였다. 매개변수(媒介變數)에 대한 연구(硏究)를 통하여 TLCD 감쇠기(減衰器)의 성능(性能) 평가(評價)를 수행(遂行)하였다.

  • PDF

시간지원 크랙잭션을 위한 충돌 검출 기법의 성능평가 (Performance Evaluation of Conflict Detection Schemes for Concurrent Temporal Tranactions)

  • 구경이;하봉옥;김유성
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권1호
    • /
    • pp.80-80
    • /
    • 1999
  • As Temporal DataBase Systems(TDBSs) manages both the historical versions and the current version of each data item, a temporal transaction may access more data records than atransaction in traditional database systems. Hence, the concurrency control subsystem of temporaldatabase management system should be able to correctly and efficiently detect actual conflicts amongconcurrent temporal transactions while the cost of detecting conflicts is maintained in low levelwithout detecting false conflicts which cause severe degradation of system throughput.In this paper, Two-Level Conflict Detection(TLCD) scheme is proposed for efficient conflictdetection between concurrent temporal transactions in TDBs. In the proposed TLCD scheme, sincechecking conflict between concurrent temporal transactions is performed at two levels, i, e., logicallevel and physical level, conflicts between concurrent temporal transactions are efficiently and correctlydetected,Furthermore, we also evaluate the performance of the proposed TLCD scheme with those oftraditional conflict detection schemes, logical-level conflict detection scheme and physical-level conflictdetection scheme by simulation approach, The result of the simulation study shows that the proposedTLCD scheme outperforms the previous conflict detection schemes with respect to the averageresponse time.

동조질량감쇠기와 동조액체기둥감쇠기의 건물응답의 제어성능 비교연구 (Comparative Study of Tuned Mass Damper and Tuned Liquid Column Damper for Response Control of Building structures)

  • 김홍진;김형섭;민경원;오정근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.427-434
    • /
    • 2003
  • In this study, the control performances of Tuned Mass Damper (TMD) and Tuned Liquid Column Damper (TLCD) are evaluated and compared for seismically excited structures. Results show that TLCD is more effective than TMD for interstory drift control while TLCD is as effective as TMD for acceleration control. In special, it is shown that interstory drifts are maximally controlled in lower floors and accelerations are reduced most in upper floors. This indicates that TLCD is an effective controller for earthquake-induced structures in terms of structural safety as well as serviceability.

  • PDF

Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.435-447
    • /
    • 2011
  • A Computational Fluid Dynamics model is presented in this study for the simulation of the complex fluid flows with free surfaces inside the Tuned Liquid Column Dampers in horizontal motion. The characteristics of the fluid model of the TLCD in horizontal motion include the free surface of the multiphase flow and the horizontal moving frame. In this study, the time depend unsteady Standard ${\kappa}-{\varepsilon}$ turbulent model based on Navier-Stokes equations is chosen. The volume of fluid (VOF) method and sliding mesh technique are adopted to track the free surface of water inside the vertical columns of TLCD and treat the moving boundary of the walls of TLCD in horizontal motion. Several model solution parameters comprising different time steps, mesh sizes, convergence criteria and discretization schemes are examined to establish model parametric independency results. The simulation results are compared with the experimental data in the dimensionless amplitude of the water column in four different configured groups of TLCDs with four different orifice areas. The predicted natural frequencies and the head loss coefficient of TLCDs from CFD model are also compared with the experimental data. The predicted numerical results agree well with the available experimental data.

실시간 하이브리드 실험법을 이용한 동조액체기둥감쇠기가 설치된 구조물의 지진응답 제어성능 평가 (Performance Evaluation of Controlling Seismic Responses of a Building Structure with a Tuned Liquid Column Damper using the Real-Time Hybrid Testing Method)

  • 정희산;이성경;박은천;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.669-673
    • /
    • 2007
  • In this study, real-time hybrid test using a shaking table for the control performance evaluation of a U-shaped TLCD controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a U-shaped TLCD adopted as an experimental part was installed to reduceits response. At first, the force that is acting between a TLCD and building structure is measured from the load cell attached on shaking table and is fed-back to the computer to control the motion of shaking table. Then, the shaking table is so driven that the error between the interface acceleration computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the shaking table. The control efficiency of the TLCD used in this paper is experimentally confirmed by implementing this process of shaking table experiment on real-time.

  • PDF