• 제목/요약/키워드: TLCD

검색결과 42건 처리시간 0.021초

Experimental study of controllable MR-TLCD applied to the mitigation of structure vibration

  • Cheng, Chih-Wen;Lee, Hsien Hua;Luo, Yuan-Tzuo
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1481-1501
    • /
    • 2015
  • MR-TLCD (Magneto-Rheological Tuned Liquid Column Damper) is a new developed vibration control device, which combines the traditional passive control property with active controllability advantage. Based on traditional TLCD governing equation, this study further considers MR-fluid viscosity in the equation and by transforming the non-linear damping term into an equivalent linear damping, a solution can be obtained. In order to find a countable set of parameters for the design of the MR-TLCD system and also to realize its applicability to structures, a series of experimental test were designed and carried out. The testing programs include the basic material properties of the MR-fluid, the damping ratio of a MR-TLCD and the dynamic responses for a frame structure equipped with the MR-TLCD system subjected to strong ground excitations. In both the analytical and experimental results of this study, it is found that the accurately tuned MR-TLCD system could effectively reduce the dynamic response of a structural system.

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

가진입력의 크기에 따른 동조액체기둥감쇠기의 비선형 특성 (Nonlinear Characteristic of a Tuned Liquid Column Damper under Various Excitation Amplitudes)

  • 이성경;이혜리;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.842-849
    • /
    • 2009
  • The objective of this study is to investigate design parameters of a tuned liquid column damper(TLCD), which is affected by various excitation amplitudes, through shaking table test. Design parameters of a TLCD are examined based on the equivalent tuned mass damper(TMD) model of a TLCD, in which the nonlinear damping of a TLCD is transposed to equivalent viscous damping. Shaking table test is carried out for a TLCD specimen subjected to harmonic waves with various amplitudes. Transfer functions are ratios of liquid displacement of TLCD and control force produced by a TLCD, respectively, with respect to the acceleration excited by a shaking table. They are derived based on the equivalent TMD model of a TLCD. Then, the variation of design parameters according to the excitation amplitude is examined by comparing analytical transfer functions with experimental ones. Finally, the dissipation energy due to the damping of a TLCD, which is experimentally observed from the shaking table test, is examined according to the excitation amplitude. Comparisons between test results and analytical transfer functions showed that natural frequencies of TLCD and the ratio of the liquid mass in a horizontal column to the total liquid mass does not depend on the excitation amplitude, while the damping ratio of a TLCD increases with larger excitation amplitudes.

  • PDF

TMD와 TLCD의 지진응답에 대한 제어성능 평가 연구 (Performance Evaluation of TMD and TLCD for Earthquake-Induced Response Control)

  • 김홍진;김형섭;민경원;오정근
    • 한국지진공학회논문집
    • /
    • 제7권5호
    • /
    • pp.85-91
    • /
    • 2003
  • 설치의 용이성과 경제성, 여러 다른 용도로의 전용 가능성, 유지보수의 용이성, 그리고 재동조의 편의성 등을 고려할 때 TLCD (Tuned Liquid Column Damper)는 기존에 건물의 응답제어에 많이 사용되는 TMD를 대체할 수 있는 감쇠장치라 할 수 있다. 본 논문에서는 TMD (Tuned Mass Damper)와 TLCD의 지진하중을 받는 구조물의 응답제어 성능평가에 관한 비교연구를 수행하였다. 성능비교분석 결과, 층간변위 제어성능에서는 TLCD가 TMD보다 우수한 성능을 보였고 가속도 제어성능에서는 서로 비슷한 것으로 나타났다. 또한 층간변위 제어에서는 저층에서 큰 제어성능을 발휘하고, 절대가속도 제어에서는 상층부에서 성능이 우수한 것으로 나타났다. 이것은 TLCD가 지진에 가장 문제가 되는 구조물의 안전성 및 거주자의 사용성에 있어서 효율적인 감쇠기라 할 수 있는 근거가 된다.

가진입력의 크기에 따른 동조액체기둥감쇠기의 비선형 특성 (Nonlinear Characteristic of a Tuned Liquid Column Damper under Various Excitation Amplitude)

  • 이성경;이혜리;민경원
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1167-1176
    • /
    • 2009
  • The objective of this study is to investigate design parameters of a tuned liquid column damper(TLCD), which is affected by various excitation amplitude, through shaking table test. Design parameters of a TLCD are examined based on the equivalent tuned mass damper(TMD) model of a TLCD, in which the nonlinear damping of a TLCD is transposed to equivalent viscous damping. Shaking table test is carried out for a TLCD specimen subjected to harmonic waves with various amplitude. Transfer functions are ratios of liquid displacement of TLCD and control force produced by a TLCD, respectively, with respect to the acceleration excited by a shaking table. They are derived based on the equivalent TMD model of a TLCD. Then, the variation of design parameters according to the excitation amplitude is examined by comparing analytical transfer functions with experimental ones. Finally, the dissipation energy due to the damping of a TLCD, which is experimentally observed from the shaking table test, is examined according to the excitation amplitude. Comparisons between test results and analytical transfer functions showed that natural frequencies of TLCD and the ratio of the liquid mass in a horizontal column to the total liquid mass do not depend on the excitation amplitude, while the damping ratio of a TLCD increases with larger excitation amplitude.

TLCD를 이용한 지진하중을 받는 3차원 비정형 건축구조물의 응답제어 (RESPONSE CONTROL OF 3D IRREGULAR BUILDINGS UNDER SEISMIC EXCITATIONS USING TLCD)

  • 김홍진;김형섭;안상경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.66-71
    • /
    • 2003
  • The semi-active TLCD system is investigated for control of responses of 3D irregular buildings under seismic excitations. The TLCD system is a special type of TMD system providing a performance similar to a TMD system but offers a number of practical advantages over the traditional TMD system. The equations of motion for the combined building and TLCD system are derived for multistory building structures with rigid floors and plan and elevation irregularities. Simulation results for control of two multistory moment-resisting space structures with vertical and plan irregularities show clearly that the semi-active TLCD control system reduces the responses of 3D irregular buildings subjected to earthquake ground motions efficiently.

  • PDF

Control of buildings using single and multiple tuned liquid column dampers

  • Chang, C.C.;Hsu, C.T.;Swei, S.M.
    • Structural Engineering and Mechanics
    • /
    • 제6권1호
    • /
    • pp.77-93
    • /
    • 1998
  • Some design formulas and design procedures for single and multiple tuned liquid column dampers (TLCDs) are proposed in this study. Previous studies show that if the properties of the TLCD system are properly selected then the TLCD could be as effective as the traditional tuned mass dampers. In addition, the TLCD system offers advantages such as flexibility in terms of installation, little maintenance required, and potentials for multiple usage, etc., which are incomparable by other mechanical types of dampers. In this paper, a set of optimal properties such as length and head loss of a TLCD system are derived under the assumption that the building vibrates in a dominate mode and is subjected to Gaussian white noise excitation. A design procedure for a single TLCD system will be illustrated and discussed. Due to the nonlinearity in the damping term, the TLCD system is sensitive to the loading intensity. This loading sensitivity could limit the application range of the TLCD system. It will be shown in this paper that such a nonlinear effect can be reduced by using multiple TLCDs. As a demonstrative example, the control effects on a flexible building modeled as a single degree-of-freedom system subjected to white noise excitation will be analyzed and discussed using single or multiple TLCDs.

TMD와 TLCD를 이용한 2방향 감쇠기의 동적특성 (Dynamic Characteristic of A Bi-dirctional Damper Using A Tuned Mass Damper and A Tuned Liquid Column Damper)

  • 이성경;민경원;박은천
    • 한국전산구조공학회논문집
    • /
    • 제21권6호
    • /
    • pp.589-596
    • /
    • 2008
  • 본 연구에서는 동조질량감쇠기(TMD)와 동조액체 기둥감쇠기(TLCD)로 구성된 2방향 감쇠기의 제어성능을 실험적으로 검증하였다. 본 연구에 사용된 감쇠기는 한방향으로는 TMD로 거동하고, 다른 직교하는 방향에서는 TLCD로 거동하여 제어력이 발생하는 감쇠기이다. 우선, 제작된 감쇠기의 동적특성과 TMD와 TLCD에 의해 발생하는 제어력들의 연계효과를 조사하기 위한 진동대 실험을 수행하였다. 다음으로 이러한 실험결과를 바탕으로 감쇠기의 동적특성에 영향을 미치는 파라미터를 정량적으로 평가하였다. 본 연구에서 사용된 감쇠기가 입사각을 갖는 진동에 의해 가진될 때 TMD와 TLCD에 의해 연계된 제어력이 발생하는 것을 진동대 실험결과로부터 확인하였다. 또한, 감쇠기가 건축물의 2방향 응답제어에도 효과적으로 사용될 수 있음을 확인하였다.

Control of 3-D coupled responses of wind-excited tall buildings by a spatially placed TLCD system

  • Liang, Shuguo;Li, Qiusheng;Qu, Weilian
    • Wind and Structures
    • /
    • 제3권3호
    • /
    • pp.193-207
    • /
    • 2000
  • The possible application of a spatially placed passive tuned liquid column damper system for suppressing coupled lateral-torsional responses of tall buildings is investigated in this paper. The wind loads acting on rectangular tall buildings are analytically expressed as 3-D stochastic model. Meanwhile, the 3-D responses of tall buildings may be coupled due to eccentricities between the stiffness and mass centers of the buildings. In these cases, torsional responses of the buildings are rather larger, and a TLCD system composed of several TLCD located near the sides of the buildings is more effective than the same TLCD placed at the building center in reducing both translational and torsional responses of the buildings. In this paper, extensive analytical and numerical work has been done to present the calculation method and optimize the parameters of such TLCD systems. The numerical examples show that the spatially placed TLCD system can reduce coupled along-wind, across-wind and torsional responses significantly with a fairly small mass ratio.

동조액체기둥감쇠기의 동적특성을 파악하기 위한 가변전압측정 시스템 개발 (Development of Variable Voltage Sensing for Identification of Dynamic Characteristics of TLCDs)

  • 장석정;김준희;민경원
    • 한국전산구조공학회논문집
    • /
    • 제28권3호
    • /
    • pp.275-281
    • /
    • 2015
  • 본 연구에서는 동조액체기둥감쇠기의 비선형감쇠항을 등가점성감쇠항으로 치환한 등가선형 동조액체기둥감쇠기 모델을 유도하였으며 동조액체기둥감쇠기의 동적거동인 고유진동수와 감쇠비를 이론적으로 파악하였다. 동조액체기둥감쇠기에 일정한 전기장을 형성한 후 동조액체기둥감쇠기의 수직운동에 의해 발생되는 가변전압을 측정하여 수조 내부의 수위로 변환하는 식을 유도하였다. 또한 본 연구에서 제안한 동조액체기둥감쇠기의 수위측정 시스템의 타당성을 검증하기 위하여 고가의 전기 용량식 파고계와 비교 및 검증하였다. 마지막으로 본 연구에서 제안한 수위측정 시스템을 동조액체기둥감쇠기에 적용, 진동대 실험을 실시하여 고유진동수와 감쇠비를 파악하였고, 이론상의 고유진동수와 실험상의 고유진동수가 일치하였음을 확인하였으며, 진동수비 변화에 따른 동조액체기둥감쇠기의 감쇠비 변화를 확인하였다.