• Title/Summary/Keyword: TLB

Search Result 38, Processing Time 0.027 seconds

Modeling of TLB Miss Rate and Page Fault Rate for Memory Management in Fast Storage Environments (고속 스토리지 환경의 메모리 관리를 위한 TLB 미스율 및 페이지 폴트율 모델링)

  • Park, Yunjoo;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2022
  • As fast storage has become popular, the memory management system designed for hard disks needs to be reconsidered. In this paper, we observe that memory access latency is sensitive to the page size when fast storage is adopted. We find the reason from the TLB miss rate, which has the increased impact on the memory access latency in comparison with the page fault rate, and there is trade-off between the TLB miss rate and the page fault rate as the page size is varied. To handle such situations, we model the page fault rate and the TLB miss rate accurately as a function of the page size. Specifically, we show that the power fit and the exponential fit with two terms are appropriate for fitting the TLB miss rate and the page fault rate, respectively. We validate the effectiveness of our model by comparing the estimated values from the model and real values.

A Branch Target Buffer Using Shared Tag Memory with TLB (TLB 태그 공유 구조의 분기 타겟 버퍼)

  • Lee, Yong-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.899-902
    • /
    • 2005
  • Pipeline hazard due to branch instructions is the major factor of the degradation on the performance of microprocessors. Branch target buffer predicts whether a branch will be taken or not and supplies the address of the next instruction on the basis of that prediction. If the branch target buffer predicts correctly, the instruction flow will not be stalled. This leads to the better performance of microprocessor. In this paper, the architecture of a tag memory that branch target buffer and TLB can share is presented. Because the two tag memories used for branch target buffer and TLB each is replaced by single shared tag memory, we can expect the smaller ship size and the faster prediction. This hared tag architecture is more advantageous for the microprocessors that uses more bits of address and exploits much more instruction level parallelism.

  • PDF

A Study on the Controller Design of the Three-Level Boost Converter for Photovoltaic Power Conditioning System (태양광 발전 시스템용 3-레벨 부스트 컨버터 제어기 설계에 관한 연구)

  • Lee, Kyu-Min;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.227-236
    • /
    • 2021
  • This research proposes a modeling and controller design of a three-level boost (TLB) converter for the implementation of maximum power point tracking (MPPT) in the photovoltaic power conditioning system (PCS). Contrary to the output voltage control of the conventional controller, the Photovoltaic PCS requires an input voltage controller for MPPT operation. A TLB converter has the advantage of decreasing the inductor size and increasing efficiency compared with the existing booster converter. However, an optimal controller is difficult to design due to the complexity of the TLB operations, which have two operational modes on the duty ratio boundary of 0.5. Therefore, the unified linear model equations of the TLB converters, which can be applicable to both operational modes, are derived using linearized solar cell expressions. Furthermore, the transfer functions are obtained for the controller design. The MPPT voltage controller is designed using MATLAB SISOTOOL. In addition, a controller for capacitor voltage unbalancing is described and designed. The simulations and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.

Analysis on the Performance and Temperature of 3D Multi-core Processors according to TLB Architecture (TLB 구조에 따른 3차원 멀티코어 프로세서의 성능, 온도 분석)

  • Son, Dong-Oh;Choi, Hong-Jun;Kim, Cheol-Hong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.5-8
    • /
    • 2011
  • 3차원 멀티코어 프로세서는 기존의 멀티코어 프로세서에서 문제가 되던 연결망 지연시간과 전력문제를 해결할 수 있는 새로운 프로세서 설계기술이다. 하지만, 전력밀도의 증가로 인해 발생하는 열섬현상은 3차원 멀티코어 프로세서의 새로운 문제점으로 두드러지고 있다. 이러한 문제를 해결하기 위해서 동적 온도 관리 기법이 사용되지만, 동적 온도 관리 기법을 적용하면 시스템에 성능 저하가 발생하게 된다. 따라서 본 논문에서는 3차원 멀티코어 프로세서에서 문제가 되는 열섬현상을 해결하기 위해 고온의 유닛을 대상으로 동적 온도 관리 기법을 적용하고자 한다. 실험대상으로는 시스템 성능에 많은 영향을 미치고 높은 접근 때문에 고온이 발생하는 TLB 유닛을 사용하고자 한다. 특히, 시스템의 성능 저하를 줄이기 위해서 기존의 시스템보다 낮은 성능을 보이는 마이크로 TLB 구조를 적용해 보고자 한다. 성능이 낮은 구조의 경우 일반적으로 더 낮은 온도 분포를 보이며 동적 온도 관리 기법에 영향을 덜 받기 때문에 동적 온도 관리 기법만 적용한 구조보다 더 낮은 성능 저하를 보일 수 있다. 실험결과 동적 온도 관리 기법을 적용한 경우 기존의 시스템에 비해 23.4%의 성능 저하가 발생하고 마이크로 TLB 구조를 적용한 경우 27.1%의 성능 저하가 발생함을 알 수 있다.

Comparison of neutral point connections between modules under interleaving operation 3-Level boost converter (3-Level Boost Converter의 인터리빙 운전 시 모듈간 중성점 연결에 따른 비교)

  • Lee, Kang Mun;Baek, Seung Woo;Kim, Hag Wone;Cho, Kwan Yual
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.447-448
    • /
    • 2020
  • 3-Level Boost Converter(TLB)의 병렬 연결 시, 배터리 및 커패시터의 맥동 전류 저감을 위하여 인터리빙 동작이 요구된다. 그러나 기존의 TLB 병렬모듈은 인터리빙 운전이 불가능하다. 본 논문에서는 TLB 병렬모듈의 인터리빙 운전이 가능한 회로의 동작을 기술하고, 커패시터 중성점 연결 시 맥동 전류저감 효과를 분석한다.

  • PDF

Effects of TLB Microbial fertilizer application on Soil Chemical Properties, Microbial Flora and Growth of Chniese Cabbage (Brassica Compestris subsp. napus var. pekinensis MAKINO) (미생물제 비료시용이 배추의 생육과 토양 화학성 및 미생물상에 미치는 영향)

  • Yun, Sei-Young;Shin, Joung-Du
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.8-16
    • /
    • 2001
  • This experiment was conducted to investigate the effects on plant growth, soil chemical properties and microbial flora with microbial fertilizer to chinese cabbage cultivation. The plant growth was promoted and the yield increased by application of Tian Li Bao(TLB) microbial fertilizer as compared with the control. However, yield a littler decreased in case of the reduced amount of urea application as a top dressing and half of compost chicken manure as a basial fertilizer even if treated with TLB microbial fertilizer. Organic matter and total nitrogen contents decreased as compared to those in the control, and total nitrogen ranged in 0.76~1.44% in the treatments at harvesting time, and decreased with application of TLB microbial fertilizer compared to that of the control. The available phosphorus content in the field before experiment was 559ppm, but it was 755ppm and 653 in the control and treatments at harvesting time, respectively. Therefore, it was shown that phosphorus content in the treatment was lower than that of the control. On the other hand, total nitrogen, phosphorous and K ranged from 2.62 to 2.94%, from 1.48 to 1.55% and from 3.60 to 4.38% in plants after harvest, respectively. There were no significant differences among the treatments. For the soil microbial flora, the population of bacteria in the treatments decreased with application of microbial fertilizer as compared with the control over all cultivation periods. It was shown that the population of pseudomonas spp. was over 3 times higher than that of the control after harvesting. The population of actinomycetes didn't show difference among the treatments, but high density of fungi after harvesting were observed in the treatments.

  • PDF

In Vivo Antifungal Activities of Surfactants against Tomato Late Blight, Red Pepper Blight, and Cucumber Downy Mildew (계면활성제를 이용한 역병과 오이 노균병 방제)

  • Yu, Ju-Hyun;Jang, Kyoung-Soo;Kim, Heung-Tae;Kim, Jin-Cheol;Cho, Kwang-Yun;Choi, Gyung-Ja
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.339-343
    • /
    • 2004
  • Anionic surfactants such as sodium dioctyl sulfosuccinate (SDSS) and sodium dodecylbenzene sulfonate (NaDBS) and a nonionic surfactant, polyoxyethylene oleyl ether (OE-7) were tested for their protective, curative, and persistent activities on tomato late blight (TLB, Phytophthora infestans), red pepper blight (RPB, P. capsici), and cucumber downy mildew (CDM, Pseudoperonospora cubensis). They exhibited a strong protective activity on TLB, RPB, and CDM. Among them, $NaDBS\;(500\;{\mu}g/ml)$ showed the most in vivo antifungal activities(1-day protective activity) with control values of 99%, 100%, and 85% against TLB, RPB, and CDM, respectively. However, the three surfactants represented a weak disease controlling efficacy on TLB, RPD, and CDM in a 1-day curative application. SDSS and NaDBS exhibited a good persistent activities on TLB and RPB. Especially, NaDBS, at $500\;{\mu}g/ml$, showed control values of more than 88% on TLB and RPB in a 7-day protective application. The results indicate SDSS and NaDBS have a potential for the control of TLB, RPB, and CDM in the fields.

Modeling and Controller Design of Three-Level Boost Converter in Photovoltaic Power Conditioning System (태양광 발전 시스템용 3-레벨 부스트 컨버터 모델링 및 제어기 설계)

  • LEE, Kyu-Min;JANG, Lae-Hyeok;KIM, Il-Song
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.202-204
    • /
    • 2020
  • 본 논문은 PCS(Photovoltaic power system)에서 MPPT 구현을 위한 TLB 컨버터의 모델링 및 제어기 설계를 제안한다. TLB 컨버터는 기존 부스트 컨버터에 비해 인덕터 크기가 감소하고, 효율이 증가하는 장점이 있다. 하지만 듀티비 0.5를 기준으로 2개의 동작 모드가 존재하여 제어기 설계 시 각 모드에 대한 해석이 필요하다. 또한 토폴로지를 모델링을 함에 있어 비선형적인 특징을 갖는 태양전지의 출력을 고려해야하는 필요성이 있다. 따라서 본 논문에서는 태양전지 출력 특성의 선형화 방정식을 이용하여 2가지 동작모드가 존재하는 TLB 컨버터를 각 모드별로 CCM 동작에서 분석하여 동일한 전달함수를 도출하였다. 이를 기반으로 MPPT 전압제어기를 설계하였으며, 제시된 모델링과 제어기는 시뮬레이션을 통해 검증하였다.

  • PDF

Automatic Detection of Memory Subsystem Parameters for Embedded Systems (임베디드 시스템을 위한 메모리 서브시스템 파라미터의 자동 검출)

  • Ha, Tae-Jun;Seo, Sang-Min;Chun, Po-Sung;Lee, Jae-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.350-354
    • /
    • 2009
  • To optimize the performance of software programs, it is important to know certain hardware parameters such as the CPU speed, the cache size, the number of TLB entries, and the parameters of the memory subsystem. There exist several ways to obtain the values of various hardware parameters. Firstly. the values can be taken from the hardware manual. Secondly, the parameters can be obtained by calling functions provided by the operating systems. Finally, hardware detection programs can find the desired values. Such programs are usually executed on PC or server systems and report the CPU speed, the cache size, the number of TLB entries, and so on. However, they do not sufficiently detect the parameters of one of the most important parts of the computer concerning performance, namely the memory bank layout in the memory subsystem. In this paper, we present an algorithm to detect the memory bank parameters. We run an implementation of our algorithm on various embedded systems and compare the detected values with the real hardware parameters. The results show that the presented algorithm detects the cache size, the number of TLB entries, and the memory bank layout with high accuracy.

Isolation and identification of antifungal compounds from Reynoutria elliptica (호장근(Reynoutria elliptica)으로부터 항균활성 물질의 분리 및 구조결정)

  • Hwang, Joo-Tae;Park, Young-Sik;Kim, Young-Shin;Kim, Jin-Cheol;Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.583-589
    • /
    • 2012
  • In the continued research on natural fungicides for the control of plant diseases by using plant-derived products, we found that Reynoutria elliptica. had a strong fungicidal activity against several plant pathogens. R. elliptica (3.2 kg) were extracted with 80% aq. MeOH and the concentrated extracted was partitioned with n-hexane, EtOAc, n-BuOH and $H_2O$ successively. The four layers were tested their disease control efficacies against 4 plant disease such as rise blast (RCB), tomato grey mold (TGM), tomato late blight (TLB), and barly powdery mildew (BPM). The n-hexane fraction was highly active showing over 95% control against TLB and BPM. and the EtOAc fraction was highly active showing over 95% control against RCB, TLB, and BPM. By using silica gel chromatography, MPLC, and HPLC, three compounds that were expected to have antifungal activity were isolated. Their chemical structures were elucidated as physcion, emodin, and emodie-8-O-glucoside by EI-MS and NMR spectroscopic analyses.