• Title/Summary/Keyword: THM 예측모델

Search Result 8, Processing Time 0.019 seconds

Application of THM Predictive Model in Water Distribution System (국내 상수관로에 대한 THM 발생 예측모델의 적용)

  • Lee, Doo-Jin;Kim, Young-Il;Sohn, Jin-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.3-11
    • /
    • 2007
  • THM models have been developed in several researchers in order to better understand and manage the presence of THM in water distribution system. Several developed models were demonstrated in this study for estimating THM concentrations in target water distribution system. In order to investigate the performance of developed THM models, lab and field test were investigated. Predicted THM concentrations by all kind of models were showed good correlation with observed values. When the developed models were compared with lab and field test, the Rodriguez model during tested models was most predictive than the other models.

Development of a Numerical Simulator for Methane-hydrate Production (메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.67-75
    • /
    • 2014
  • Methane gas hydrate which is considered energy source for the next generation has an urgent need to develop reliable numerical simulator for coupled THM phenomena in the porous media, to minimize problems arising during the production and optimize production procedures. International collaborations to improve previous numerical codes are in progress, but they still have mismatch in the predicted value and unstable convergence. In this paper, FEM code for fully coupled THM phenomena is developed to analyze methane hydrate dissociation in the porous media. Coupled partial differential equations are derived from four mass balance equations (methane hydrate, soil, water, and hydrate gas), energy balance equation, and force equilibrium equation. Five main variables (displacement, gas saturation, fluid pressure, temperature, and hydrate saturation) are chosen to give higher numerical convergence through trial combinations of variables, and they can analyze the whole region of a phase change in hydrate bearing porous media. The kinetic model is used to predict dissociation of methane hydrate. Developed THM FEM code is applied to the comparative study on a Masuda's laboratory experiment for the hydrate production, and verified for the stability and convergence.

Mechanical Constitutive Model for Frozen Soil (동토지반에 대한 역학적 구성모델)

  • Shin, Ho-Sung;Kim, Ji-Min;Lee, Jang-Guen;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.85-94
    • /
    • 2012
  • Recently, growing interests in frozen ground have stimulated us to advance fundamental theories and systematic researches on soil behavior under freezing conditions. Unlike the well-established soil mechanics theory, temperature variation and phase change of pore-water cause water migration to cold side, ground heaving, sharp increase in earth pressure, etc., which bring about serious problems in frozen geotechnical structures. Elasto-plastic mechanical constitutive model for frozen/unfrozen soil subjected to fully coupled THM phenomena is formulated based on a new stress variable that is continuous in frozen-unfrozen transitional regions. Numerical simulations are conducted to discuss numerical reliability and applicability of the developed constitutive model: one-dimensional heaving pressure, tri-axial compression test, and one-side freezing tests. The numerical results show that developed model can efficiently describe complex THM phenomena of frozen soil, and they can be utilized to analyze and design the geotechnical structures under freezing conditions, and predict their long-term behavior.

Modeling Residual Chlorine and THMs in Water Distribution System (배급수계통에서 잔류염소 및 THMs 분포 예측에 관한 연구)

  • Ahn, Jae-Chan;Lee, Su-Won;Rho, Bang-Sik;Choi, Young-Jun;Choi, Jae-Ho;Kim, Hyo-Il;Park, Tae-Jun;Park, Chang-Min;Park, Hyeon;Koo, Ja-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.706-714
    • /
    • 2007
  • This study suggested a method for prediction of residual chlorine and THMs in water distribution system by measurement of residual chlorine, THMs, and other parameters, estimation of chlorine decay coefficients and THM formation coefficients, and simulation of water qualities using pipe network analysis. Bulk decay coefficients of parallel first-order were obtained by bottle tests, and pipe wall decay coefficients of first-order were estimated through evaluation of 5 models, which showed the lowest values of 0.03 for MAE(mean absolute error) and 0.037 MAE in comparison with the observed in field. And bottle tests were conducted to model first-order reaction of THM formation by nonlinear least square regression and the resultant coefficients were compared with the observed in field. As a result, the coefficients of determination$(R^2)$ for the observed and the predicted values were 0.98 in September and 0.82 in November, and the formation of THMs was predicted by modeling.

Numerical Modeling of Coupled Thermo-hydro-mechanical Behavior of MX80 Bentonite Pellets (MX80 벤토나이트 펠렛의 열-수리-역학적 복합거동 모델링)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.446-461
    • /
    • 2020
  • Numerical simulations of CIEMAT column test in Spain are performed to investigate the coupled thermo-hydro-mechanical (THM) behavior of MX80 bentonite pellets using TOUGH2-FLAC3D. The heater power and injection pressure of water in the numerical simulations are identical to those in the laboratory test. To investigate the applicability of the thermo-hydraulic (TH) model used in TOUGH2 code to prediction of the coupled TH behavior, the simulation results are compared with the observations of temperature and relative humidity with time. The tendencies of the coupled behavior observed in the test are well represented by the numerical models and the simulator in terms of temperature and relative humidity evolutions. Moreover, the performance of the models for the reproduction and prediction of the coupled TH behavior is globally satisfactory compared with the observations. However, the calculated stress change is relatively small and slow due to the limitations of the simple elastic and swelling pressure model used in numerical simulations. It seems that the two models are insufficient to realistically reproduce the complex coupled THM behavior in the bentonite pellets.

Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils (불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개)

  • Lee, Changsoo;Yoon, Seok;Lee, Jaewon;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model (BBM) can describe not only swelling owing to decrease in effective stress, but also wetting-induced swelling due to decrease in suction. And the BBM can also consider increase in cohesion and apparent preconsolidation stress with suction, and decrease in the apparent preconsolidation stress with temperature. Therefore, the BBM is widely used all over the world to predict and to analyze coupled thermo-hydro-mechanical behavior of bentonite which is considered as buffer materials at the engineered barrier system in the high-level radioactive waste disposal system. However, the BBM is not well known in Korea, so this paper introduce the BBM to Korean rock engineers and geotechnical engineers. In this study, Modified Cam Clay (MCC) model is introduced before all, because the BBM was first developed as an extension of the MCC model to unsaturated soil conditions. Then, the thermo-elasto-plastic version of the BBM is described in detail.

Numerical analysis of FEBEX at Grimsel Test Site in Switzerland (스위스 Grimsel Test Site에서 수행된 FEBEX 현장시험에 대한 수치해석적 연구)

  • Lee, Changsoo;Lee, Jaewon;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.359-381
    • /
    • 2020
  • Within the framework of DECOVALEX-2019 Task D, full-scale engineered barriers experiment (FEBEX) at Grimsel Test Site was numerically simulated to investigate an applicability of implemented Barcelona basic model (BBM) into TOUGH2-MP/FLAC3D simulator, which was developed for the prediction of the coupled thermo-hydro-mechanical behavior of bentonite buffer. And the calculated heater power, temperature, relative humidity, total stress, saturation, water content and dry density were compared with in situ data monitored in the various sections. In general, the calculated heater power and temperature provided a fairly good agreement with experimental observations, however, the difference between power of heater #1 and that of heater #2 could not captured in the numerical analysis. It is necessary to consider lamprophyre with low thermal conductivity around heater #1 and non-simplified installation progresses of bentonite blocks in the tunnel for better modeling results. The evolutions and distributions of relative humidity were well reproduced, but hydraulic model needs to be modified because the re-saturation process was relatively fast near the heaters. In case of stress evolutions due to the thermal and hydraulic expansions, the computed stress was in good agreement with the data. But, the stress is slightly higher than the measured in situ data at the early stage of the operation, because gap between rock mass and bentonite blocks have not been considered in the numerical simulations. The calculated distribution of saturation, water content, and dry density along the radial distance showed good agreement with the observations after the first and final dismantling. The calculated dry density near the center of the FEBEX tunnel and heaters were overestimated compared with the observations. As a result, the saturation and water content were underestimated with the measurements. Therefore, numerical model of permeability is needed to modify for the production of better numerical results. It will be possible to produce the better analysis results and more realistically predict the coupled THM behavior in the bentonite blocks by performing the additional studies and modifying the numerical model based on the results of this study.

An Analysis of the Water Saturation Processes in the Engineered Barrier of a High Level Radioactive Waste Disposal System (고준위폐기물처분시스템 공학적 방벽에서의 지하수 포화공정 해석)

  • Park, Jeong-Hwa;Lee, Jae-Owan;Kwon, Sang-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • An engineering scale test, which is called KENTEX, was carried out to understand and to analyze the coupled thermal, hydrological and mechanical phenomena in the engineered barrier system(EBS) of Korean reference disposal system. Using the experimental data obtained from KENTEX, the water saturation processes in bentonite could be analyzed. From the comparison between the model calculation using ABAQUS and the experimental results, the difference of the water content between them in the unsaturating part was large because the drying phenomena due to moisture redistribution by the temperature gradient could not be included in the model. In the saturating part, the difference of the water content between them was decreased gradually and showed to be small in the full saturation. And the time of about 95% saturation could be estimated about 500 days from the model calculation and experimental results. Also it could be known that the moisture redistribution in the unsaturated part could not be affected on the saturation time of bentonite in the repository. Therefore, it is considered that this model could be used to quantitatively predict the water saturation time in bentonite as EBS for the disposal system.