• Title/Summary/Keyword: THD(total harmonic distortion)

Search Result 259, Processing Time 0.024 seconds

두 대의 5-레벨 인버터의 직렬결합을 이용한 멀티레벨인버터 (Multilevel Inverter using Two 5-level Inverters Connected in Series)

  • 최원균;권철순;홍운택;강필순
    • 전력전자학회논문지
    • /
    • 제15권5호
    • /
    • pp.376-380
    • /
    • 2010
  • 본 논문에서는 양방향 스위치를 가지는 기존의 5-레벨 인버터를 직렬 결합하여 다수의 출력 전압 레벨을 형성할 수 있는 멀티레벨 인버터 구조를 제안한다. 무엇보다도 제안된 회로의 입력 전압원 크기를 5의 배수로 구성함으로서 보다 많은 수의 레벨을 생성시킬 수 있다. 동일한 수의 출력 전압 레벨 형성시 기존의 Cascaded H-bridge cell 방식보다 스위칭 소자를 줄일 수 있어 시스템 크기, 비용, 전력 손실을 저감시킬 수 있는 장점을 가진다. 두 대의 5-레벨 인버터를 직렬 결합함으로써 25-레벨의 출력전압을 생성시킬 수 있는 인버터에 대한 특성을 분석하고 시뮬레이션과 실험을 통해 타당성을 검증한다.

전기차용 전력변환장치의 펄스 폭 변조 기법 분석 (Analysis of Pulse Width Modulation Schemes for Electric Vehicle Power Converters)

  • ;채상헌;김일환;양승용;부창진;김호찬
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2225-2231
    • /
    • 2016
  • In order to overcome the problem of fossil fuel energy, electric vehicle (EV) has been used in recent years. The important issues of EV are driving distance and lifetime related to EV efficiency. A voltage source converter is one of the main components of EV which can be operated with various pulse width modulation (PWM) schemes such as continuous PWM schemes and discontinuous PWM schemes. These PWM schemes will cause the effects on the efficiency of converter system and the lifetime of EV. Therefore, this paper proposes an analysis of the PWM schemes for the power converter on the EV. The objective is to find out a best solution for the EV by comparing the total harmonic distortion (THD) and transient response between the various PWM schemes. The operation of traction motor on the EV with the PWM schemes will be verified by using Psim simulation program.

Analysis and Implementation of PS-PWAM Technique for Quasi Z-Source Multilevel Inverter

  • Seyezhai, R.;Umarani, D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.688-698
    • /
    • 2018
  • Quasi Z-Source Multilevel Inverter (QZMLI) topology has attracted grid connected Photovoltaic (PV) systems in recent days. So there is a remarkable research thrust in switching techniques and control strategies of QZMLI. This paper presents the mathematical analysis of Phase shift- Pulse Width Amplitude Modulation (PS-PWAM) for QZMLI and emphasizes on the advantages of the technique. The proposed technique uses the maximum and minimum envelopes of the reference waves for generation of pulses and proportion of it to generate shoot-through pulses. Hence, it results in maximum utilization of input voltage, lesser switching loss, reduced Total Harmonic Distortion (THD) of the output voltage, reduced inductor current ripple and capacitor voltage ripple. Due to these qualities, the QZMLI with PS-PWAM emerges to be the best suitable for PV based grid connected applications compared to Phase shift-Pulse Width Modulation (PS-PWM). The detailed math analysis of the proposed technique has been disclosed. Simulation has been performed for the proposed technique using MATLAB/Simulink. A prototype has been built to validate the results for which the pulses were generated using FPGA /SPARTAN 3E.

불검출영역이 없는 새로운 단독운전 검출기법 (A Novel Islanding Detection Scheme without Non Detection Zone)

  • 조영민;김동균;조상윤;송승호;최익;이영권;최주엽
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.540-549
    • /
    • 2015
  • Unintentional islanding results in safety hazards, reliability, and many other issues. Therefore, the islanding detection of a power conditioning system of a distributed generation, such as a grid-connected photovoltaic inverter, is a key function for standard compliance. Currently, many anti-islanding schemes have been examined, but existing anti-islanding schemes have poor power quality and non-detection zone issues. Therefore, this study analyzes the non-detection zone in a more deliberate manner than the existing analysis of the non-detection zone and proposes a new anti-islanding scheme, which has negligible power quality degradation and no non-detection zone. Simulation and experimental results validate that the proposed scheme shows much better performance than other existing schemes.

25MW급 대용량 멀티레벨 인버터의 시뮬레이션 기반 손실해석과 출력특성 비교 분석 (Simulation based Comparative Loss Analysis and Output Characteristic for 25MW Class of High Power Multi-level Inverters)

  • 김이김;박찬배;백제훈;곽상신
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.337-343
    • /
    • 2015
  • The multi-level inverters are highly efficient for high-power and medium-voltage AC driving applications, such as high-speed railway systems and renewable energy resources, because such inverters generate lower total harmonic distortion (THD) and electromagnetic interface (EMI). Lower switching stress occurs on switching devices compared with conventional two-level inverters. Depending on the multi-level inverter topology, the required components and number of switching devices are different, influencing the overall efficiency. Comparative studies of multi-level inverters based on loss analysis and output characteristic are necessary to apply multi-level inverters in high-power AC conversion systems. This paper proposes a theoretical loss analysis method based on piecewise linearization of characteristic curves of power semiconductor devices as well as loss analysis and output performance comparison of five-level neutral-point clamped, flying capacitor inverters, and high-level cascaded H-bridge multi-level inverters.

사고 패턴 분류에 기초한 배전계통의 적응 재폐로방식 (An Adaptive Reclosing Scheme Based on the Classification of Fault Patterns in Power distribution System)

  • 오정환;김재철;윤상윤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권3호
    • /
    • pp.112-119
    • /
    • 2001
  • This paper proposes an adaptive reclosing scheme which is based on the classification of fault patterns. In case that the first reclosing is unsuccessful in distribution system employing with two-shot reclosing scheme, the proposed method can determine whether the second reclosing will be attempted of not. If the first reclosing is unsuccessful two fault currents can be measured before the second reclosing is attempted, where these two fault currents are utilized for an adaptive reclosing scheme. Total harmonic distortion and RMS are used for extracting the characteristics of two fault currents. And the pattern of two fault currents is respectively classified using a mountain clustering method a minimum-distance classifier. Mountain clustering method searches the cluster centers using the acquired past data. And minimum-distance classifier is used for classifying the measured two currents into one of the searched centers respectively. If two currents have the different pattern it is interpreted as temporary fault. But in case of the same pattern, the occurred fault is interpreted as permanent. The proposed method was tested for the fault data which had been measured in KEPCO's distribution system, and the test results can demonstrate the effectiveness of the adaptive reclosing scheme.

  • PDF

Robust Deadbeat Current Control Method for Three-Phase Voltage-Source Active Power Filter

  • Nishida, Katsumi;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권2호
    • /
    • pp.102-111
    • /
    • 2004
  • This paper is concerned with a deadbeat current control implementation of shunt-type three-phase active power filter (APF). Although the one-dimensional deadbeat control method can attain time-optimal response of APF compensating current, one sampling period is actually required fur its settling time. This delay is a serious drawback for this control technique. To cancel such a delay and one more delay caused by DSP execution time, the desired APF compensating current has to be predicted two sampling periods ahead. Therefore an adaptive predictor is adopted for the purpose of both predicting the control error of two sampling periods ahead and bringing the robustness to the deadbeat current control system. By adding the adaptive predictor output as an adjustment term to the reference value of half a source voltage period before, settling time is made short in a transient state. On the other hand, in a steady state, THD (total harmonic distortion) of the utility grid side AC source current can be reduced as much as possible, compared to the case that ideal identification of controlled system could be made.

A Novel Three Phase Series-Parallel Resonant Converter Fed DC-Drive System

  • Daigavane, Manoj;Suryawanshi, Hiralal;Khan, Jawed
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.222-232
    • /
    • 2007
  • This paper presents the application of a single phase AC-to-DC converter using a three-phase series parallel (SPRC) resonant converter to variable speed dc-drive. The improved power quality converter gives the input power factor unity over a wide speed range, reduces the total harmonic distortion (THD) of ac input supply current, and makes very low ripples in the armature current and voltage waveform. This soft-switching converter not only possesses the advantages of achieving high switching frequencies with practically zero switching losses but also provides full ranges of voltage conversion and load variation. The proposed drive system is the most appropriate solution to preserve the present separately excited de motors in industry compared with the use of variable frequency ac drive technology. The simulation and experimental results are presented for variable load torque conditions. The variable frequency control scheme is implemented using a DSP- TMS320LF2402. This control reduces the switching losses and current ripples, eliminates the EMI and improves the efficiency of the drive system. Experimental results confirm the consistency of the proposed approach.

소형풍력발전을 위한 3상 단일전력단 교류-직류 컨버터 (3-Phase Single Stage AC-DC Converter for Small Wind Turbine System)

  • 문유진;박범수;김상규;김은수;임덕진
    • 전력전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.68-75
    • /
    • 2023
  • This paper proposes a three-phase single-stage AC-DC converter for the small wind generation system. Input power factor improvement and insulated output can be implemented with the proposed three-phase single-stage AC-DC converter under the wide power generation voltage (80-260 Vac) and frequency (10-42 Hz) in a small wind power generation (WPG) system. The proposed converter is also capable of zero-voltage switching in the primary-side switches and zero-current switching in the secondary-side diodes by phase-shift control at a fixed switching frequency. In addition, it is possible to control a wide output voltage (Vo: 39 VDC-60 VDC) by varying the link voltage and improving the input power factor (PF) and the total harmonic distortion factor (THDi). Simulation and experimental results verified the validity of the proposed converter.

해양플랜트 전력시스템의 고조파 비교분석에 관한 연구 (A Comparative Study on Power System Harmonics for Offshore Plants)

  • 김덕기;이원주;김종수
    • 해양환경안전학회지
    • /
    • 제22권7호
    • /
    • pp.900-905
    • /
    • 2016
  • 해양구조물에 전기 안전사고가 급증하면서 전력시스템 고조파 분야가 최근 많은 관심 받고 있다. 이것은 주로 비선형 (또는 고조파 생성) 부하가 일반적인 산업플랜트 전력시스템에서 계속 증가되고 있기 때문이다. 해양플랜트에서는 전력시스템의 안전설계로 인하여 고조파 문제의 발생률은 낮지만, 고조파 문제에 대한 인식은 전력시스템 설계의 신뢰성을 향상시키는데 여전히 도움이 될 수 있다. 전력시스템에 고조파 문제가 드물게 발생되는 경우, 이는 생성된 고조파의 크기 혹은 전력시스템의 공진 때문이다. 이 고조파 비교분석에 관한 연구는 전력부하를 고려한 부유식 액화천연가스 생산 저장 하역 (FLNG) 설비의 하역 운전 시나리오에 대한 전기적인 구성으로 비교분석하였다. 전기적인 네트워크 구성은 전기적인 네트워크 부하 흐름에서 볼 수 있다. 본 연구는 해양플랜트 전력시스템의 안전을 보장하기 위해 전기 모터 시스템의 고조파 효율에 초점을 맞추어 전력시스템 성능을 시뮬레이션을 통해 검증하였다. 또한, 본 연구의 설계분야에서도 운전 및 유지 보수의 향상시키기 위해 FLNG 설비의 전력시스템을 분석하였다.