• 제목/요약/키워드: TGF-β

검색결과 246건 처리시간 0.02초

Insulin as a Potent Stimulator of Akt, ERK and Inhibin-βE Signaling in Osteoblast-Like UMR-106 Cells

  • Ramalingam, Mahesh;Kwon, Yong-Dae;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.589-594
    • /
    • 2016
  • Insulin is a peptide hormone of the endocrine pancreas and exerts a wide variety of physiological actions in insulin sensitive tissues, such as regulation of glucose homeostasis, cell growth, differentiation, learning and memory. However, the role of insulin in osteoblast cells remains to be fully characterized. In this study, we demonstrated that the insulin (100 nM) has the ability to stimulate the phosphorylation of protein kinase B (Akt/PKB) and extracellular signal-regulated kinase (ERK) and the levels of inhibin-${\beta}E$ in the osteoblast-like UMR-106 cells. This insulin-stimulated activities were abolished by the PI3K and MEK1 inhibitors LY294002 and PD98059, respectively. This is the first report proving that insulin is a potential candidate that enables the actions of inhibin-${\beta}E$ subunit of the TGF-${\beta}$ family. The current investigation provides a foundation for the realization of insulin as a potential stimulator in survival signaling pathways in osteoblast-like UMR-106 cells.

뼈형성 단백질(Bone Morphogenetic Protein 1)의 단백질 분해 부위의 발현 및 특성 연구 (Expression, Refolding, and Characterization of the Proteolytic Domain of Human Bone Morphogenetic Protein 1)

  • 차재호
    • 생명과학회지
    • /
    • 제10권2호
    • /
    • pp.218-227
    • /
    • 2000
  • Bone morphogenetic protein 1 (BMP-1) is part of a complex capable of inducing ectopic bone formation in mammals. Studies on TGF-β1 processing and Drosophila dorsal-ventral patterning have focused attention on BMP-1 as important in mediating the biological activity of this bone inducing complex. Herein, the bacterial expression, refolding, purification, and initial characterization of the BMP-1 proteolytic domain (BPD) are described. A semi-quantitative fluorescence-based thin layer chromatography assay was developed to assist in rapidly screening for optimal renaturation conditions. According to a preliminary screen for optimal conditions for the refolding of BPD , a detectable proteolytic activity against a high turnover substrate for astacin, a homologous protease from crayfish was observed. The conditions identified have allowed the expression of sufficient amounts of BPD for the characterization of the protein. Its proteolytic activity exhibits the same cleavage specificity as astacin against seven substrates that were previously synthesized for studying astacin. Furthermore, this activity is inhibited by the metal chelator 1,10-phenanthroline but not by its analogue 1,7-phenanthroline. The collagenase inhibitor Pro-Leu-Gly hydroxamate was found to inhibit both astacin and BPD activity. The results presented in this paper argue that BMP-1 does in fact possess an intrinsic proteolytic activity.

  • PDF

Apigenin Increases Natural Killer Cytotoxicity to Human Hepatocellular Carcinoma Expressing HIF-1α through High Interaction of CD95/CD95L

  • Lee, Hwan Hee;Cho, Hyosun
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권4호
    • /
    • pp.397-404
    • /
    • 2022
  • Natural killer (NK) cell activity is more attenuated in hepatocellular carcinoma (HCC) patients than normal. Hypoxic-inducible factor (HIF)-1α is highly expressed in tumors to maintain their metabolism in a hypoxic environment. The expression of HIF-1α in cancers can lead to cell growth, proliferation, invasion/metastasis and immune escape. Although apigenin, a flavonoid, is known to have various biological activities, it has not been demonstrated in NK cell immune activity in HCC cells. In this study, NK-92 cells were directly cocultured with HCC SK-Hep1 cells for 24 h to evaluate NK cell activity in HCC cells or HCC cells expressing HIF-1α by apigenin. NK cell cytotoxicity to HCC cells expressing HIF-1α was significantly increased, and NK cell-activating receptors, NKG2D, NKp30 and NKp44 were highly expressed. The activating effect of apigenin on NK cells substantially induced apoptosis in HCC cells expressing HIF-1α through high expression of CD95L on the surface of NK-92 cells. Moreover, apigenin excellently inhibited the level of TGF-β1 in a coculture of NK cells and HCC cells. In conclusion, apigenin seems to be a good compound that increases NK cell cytotoxicity to HCC cells by controlling HIF-1α expression.

m6A in the Signal Transduction Network

  • Jang, Ki-Hong;Heras, Chloe R.;Lee, Gina
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.435-443
    • /
    • 2022
  • In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.

Development and Functions of Alveolar Macrophages

  • Woo, Yeon Duk;Jeong, Dongjin;Chung, Doo Hyun
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.292-300
    • /
    • 2021
  • Macrophages residing in various tissue types are unique in terms of their anatomical locations, ontogenies, developmental pathways, gene expression patterns, and immunological functions. Alveolar macrophages (AMs) reside in the alveolar lumen of the lungs and serve as the first line of defense for the respiratory tract. The immunological functions of AMs are implicated in the pathogenesis of various pulmonary diseases such as allergic asthma, chronic obstructive pulmonary disorder (COPD), pulmonary alveolar proteinosis (PAP), viral infection, and bacterial infection. Thus, the molecular mechanisms driving the development and function of AMs have been extensively investigated. In this review article, we discuss the roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF)-β in AM development, and provide an overview of the anti-inflammatory and pro-inflammatory functions of AMs in various contexts. Notably, we examine the relationships between the metabolic status of AMs and their development processes and functions. We hope that this review will provide new information and insight into AM development and function.

Ginsenoside Rb2: A review of pharmacokinetics and pharmacological effects

  • Miao, Longxing;Yang, Yijun;Li, Zhongwen;Fang, Zengjun;Zhang, Yongqing;Han, Chun-chao
    • Journal of Ginseng Research
    • /
    • 제46권2호
    • /
    • pp.206-213
    • /
    • 2022
  • Ginsenoside Rb2 is an active protopanaxadiol-type saponin, widely existing in the stem and leave of ginseng. Rb2 has recently been the focus of studies for pharmaceutical properties. This paper provides an overview of the preclinical and clinical pharmacokinetics for Rb2, which exhibit poor absorption, rapid tissue distribution and slow excretion through urine. Pharmacological studies indicate a beneficial role of Rb2 in the prevention and treatment of diabetes, obesity, tumor, photoaging, virus infection and cardiovascular problems. The underlying mechanism is involved in an inhibition of oxidative stress, ROS generation, inflammation and apoptosis via regulation of various cellular signaling pathways and molecules, including AKT/SHP, MAPK, EGFR/SOX2, TGF-β1/Smad, SIRT1, GPR120/AMPK/HO-1 and NF-κB. This work would provide a new insight into the understanding and application of Rb2. However, its therapeutic effects have not been clinically evaluated. Further studies should be aimed at the clinical treatment of Rb2.

Comprehensive Transcriptomic Analysis for Thymic Epithelial Cells of Aged Mice and Humans

  • Sangsin Lee;Seung Geun Song;Doo Hyun Chung
    • IMMUNE NETWORK
    • /
    • 제23권5호
    • /
    • pp.36.1-36.16
    • /
    • 2023
  • Thymic epithelial cells (TECs) play a critical role in thymic development and thymopoiesis. As individuals age, TECs undergo various changes that impact their functions, leading to a reduction in cell numbers and impaired thymic selection. These age-related alterations have been observed in both mice and humans. However, the precise mechanisms underlying age-related TEC dysfunction remain unclear. Furthermore, there is a lack of a comprehensive study that connects mouse and human biological processes in this area. To address this gap, we conducted an extensive transcriptome analysis of young and old TECs in mice, complemented by further analysis of publicly available human TEC single-cell RNA sequencing data. Our analysis revealed alterations in both known and unknown pathways that potentially contribute to age-related TEC dysfunction. Specifically, we observed downregulation of pathways related to cell proliferation, T cell development, metabolism, and cytokine signaling in old age TECs. Conversely, TGF-β, BMP, and Wnt signaling pathways were upregulated, which have been known to be associated with age-related TEC dysfunctions or newly discovered in this study. Importantly, we found that these age-related changes in mouse TECs were consistently present in human TECs as well. This cross-species validation further strengthens the significance of our findings. In conclusion, our comprehensive analysis provides valuable insight into the biological and immunological characteristics of aged TECs in both mice and humans. These findings contribute to a better understanding of thymic involution and age-induced immune dysfunction.

Skin wound healing effects of (+)-syringaresinol from ginseng berry

  • Jee-hyun Hwang;Yeonsoo Kang;Heui-Jin Park;Seolyeong Kim;Su-Hyun Lee;Hangun Kim;Sang-Jip Nam;Kyung-Min Lim
    • Journal of Ginseng Research
    • /
    • 제47권5호
    • /
    • pp.654-661
    • /
    • 2023
  • Background: Ginseng has been used as a traditional medicine and functional cosmetic ingredients for many years. Recent studies have focused on the potential biological effects of the ginseng berry and its ingredients. (+)-Syringaresinol (SYR) is enriched in ginseng berry and its beneficial effects on the skin have been recently reported. However, little is known about the its effects on the wound healing process of skin. Methods: Here, we evaluated the skin wound healing effect of (+)-SYR using the human fibroblast Hs68 cell and ex vivo pig and human skin tissue model. Scratch wound test and hydrogen peroxide (HPO) induce chemical wound model were employed. Results: (+)-SYR promoted the migration and proliferation of Hs68 cells without significant cytotoxicity at the tested concentrations. Especially, in ex vivo pig and human skin tissue, HPO-induced chemical wound was recovered almost completely by (+)-SYR. In line with the finding in Hs68, the protein expression levels of TGF-β and PCNA, a proliferation marker were increased, demonstrating the beneficial effects of (+)-SYR on skin wound repair. Conclusion: Collectively, we demonstrated that (+)-SYR from ginseng berry, can enhance the wound healing effect by accelerating cell proliferation and skin regeneration, suggesting the potential utility of (+)-SYR for skin wound repair.

Protective Effects of BCC Against Oxidative Stress in Cardiomyocyte Cells

  • Bong-Geun Shin;Dae-Kwan Kim
    • 대한의생명과학회지
    • /
    • 제30권1호
    • /
    • pp.10-16
    • /
    • 2024
  • Oxidative stress caused by elevated reactive oxygen species (ROS) in the heart causes various heart diseases. Oxidative stress is known as a factor that causes diseases in various organs as well as the heart. Diseases such as heart failure, myocardial infarction, and cardiomyopathy caused by oxidative stress in the heart can be treated with medication or surgery. Recently, blood cells concentrate (BCC) is used in various treatment areas such as orthopedics, gynecology, and urology. BCC therapy is applied to treatment by concentrating platelets and white blood cells necessary for regeneration through simple centrifugation using autologous blood. As the platelets are activated, many growth factors are released from alpha granules of the platelets. Growth factors such as TGF-β1, PDGF, VEGF, and EGF derived from platelets are involved in various cell signaling pathway. Due to these growth factors, BCC can contribute to tissue regeneration and can treat various diseases. CD34+ cells contained in BCC may also play an important role in tissue regeneration. In this study, we investigated whether BCC has a regenerative effect on heart disease, and if so, what mechanism causes the effect. To observe this, cardiomyocyte cells were treated with H2O2 to induce oxidative stress. And the effect was confirmed in the presence or absence of BCC. As a result, in the presence of BCC, the oxidative stress of cardiomyocyte cells was reduced and cell damage was also reduced. These results suggest that BCC therapy can be a new treatment alternative for heart disease.

Identification and structure of AIMP2-DX2 for therapeutic perspectives

  • Hyeon Jin Kim;Mi Suk Jeong;Se Bok Jang
    • BMB Reports
    • /
    • 제57권7호
    • /
    • pp.318-323
    • /
    • 2024
  • Regulation of cell fate and lung cell differentiation is associated with Aminoacyl-tRNA synthetases (ARS)-interacting multifunctional protein 2 (AIMP2), which acts as a non-enzymatic component required for the multi-tRNA synthetase complex. In response to DNA damage, a component of AIMP2 separates from the multi-tRNA synthetase complex, binds to p53, and prevents its degradation by MDM2, inducing apoptosis. Additionally, AIMP2 reduces proliferation in TGF-β and Wnt pathways, while enhancing apoptotic signaling induced by tumor necrosis factor-α. Given the crucial role of these pathways in tumorigenesis, AIMP2 is expected to function as a broad-spectrum tumor suppressor. The full-length AIMP2 transcript consists of four exons, with a small section of the pre-mRNA undergoing alternative splicing to produce a variant (AIMP2-DX2) lacking the second exon. AIMP2-DX2 binds to FBP, TRAF2, and p53 similarly to AIMP2, but competes with AIMP2 for binding to these target proteins, thereby impairing its tumor-suppressive activity. AIMP2-DX2 is specifically expressed in a diverse range of cancer cells, including breast cancer, liver cancer, bone cancer, and stomach cancer. There is growing interest in AIMP2-DX2 as a promising biomarker for prognosis and diagnosis, with AIMP2-DX2 inhibition attracting significant interest as a potentially effective therapeutic approach for the treatment of lung, ovarian, prostate, and nasopharyngeal cancers.