DOI QR코드

DOI QR Code

Development and Functions of Alveolar Macrophages

  • Woo, Yeon Duk (Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Jeong, Dongjin (Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Chung, Doo Hyun (Department of Pathology, Seoul National University College of Medicine)
  • Received : 2021.03.12
  • Accepted : 2021.04.18
  • Published : 2021.05.31

Abstract

Macrophages residing in various tissue types are unique in terms of their anatomical locations, ontogenies, developmental pathways, gene expression patterns, and immunological functions. Alveolar macrophages (AMs) reside in the alveolar lumen of the lungs and serve as the first line of defense for the respiratory tract. The immunological functions of AMs are implicated in the pathogenesis of various pulmonary diseases such as allergic asthma, chronic obstructive pulmonary disorder (COPD), pulmonary alveolar proteinosis (PAP), viral infection, and bacterial infection. Thus, the molecular mechanisms driving the development and function of AMs have been extensively investigated. In this review article, we discuss the roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF)-β in AM development, and provide an overview of the anti-inflammatory and pro-inflammatory functions of AMs in various contexts. Notably, we examine the relationships between the metabolic status of AMs and their development processes and functions. We hope that this review will provide new information and insight into AM development and function.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grants funded by Ministry of Science and ICT (MSIT) - grant No. 2020R1A2C2008312 and 2020R1A4A1017515.

References

  1. Antoniu, S.A., Rajnoveanu, R., Grigore, M., and Antohe, I. (2020). Pharmacotherapy options in pulmonary alveolar proteinosis. Expert Opin. Pharmacother. 21, 1359-1366. https://doi.org/10.1080/14656566.2020.1757650
  2. Bazewicz, C.G., Dinavahi, S.S., Schell, T.D., and Robertson, G.P. (2019). Aldehyde dehydrogenase in regulatory T-cell development, immunity and cancer. Immunology 156, 47-55. https://doi.org/10.1111/imm.13016
  3. Belchamber, K.B.R. and Donnelly, L.E. (2017). Macrophage dysfunction in respiratory disease. Results Probl. Cell Differ. 62, 299-313. https://doi.org/10.1007/978-3-319-54090-0_12
  4. Bhavsar, P.K., Levy, B.D., Hew, M.J., Pfeffer, M.A., Kazani, S., Israel, E., and Chung, K.F. (2010). Corticosteroid suppression of lipoxin A4 and leukotriene B4 from alveolar macrophages in severe asthma. Respir. Res. 11, 71. https://doi.org/10.1186/1465-9921-11-71
  5. Bissonnette, E.Y., Lauzon-Joset, J.F., Debley, J.S., and Ziegler, S.F. (2020). Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis. Front. Immunol. 11, 583042. https://doi.org/10.3389/fimmu.2020.583042
  6. Canton, J., Neculai, D., and Grinstein, S. (2013). Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13, 621-634. https://doi.org/10.1038/nri3515
  7. Chavis, C., Godard, P., Michel, F.B., Crastes de Paulet, A., and Damon, M. (1991). Sulfidopeptide leukotrienes contribute to human alveolar macrophage activation in asthma. Prostaglandins Leukot. Essent. Fatty Acids 42, 95-100. https://doi.org/10.1016/0952-3278(91)90074-F
  8. Chen, H., Cowan, M.J., Hasday, J.D., Vogel, S.N., and Medvedev, A.E. (2007). Tobacco smoking inhibits expression of proinflammatory cytokines and activation of IL-1R-associated kinase, p38, and NF-kappaB in alveolar macrophages stimulated with TLR2 and TLR4 agonists. J. Immunol. 179, 6097-6106. https://doi.org/10.4049/jimmunol.179.9.6097
  9. Coleman, M.M., Ruane, D., Moran, B., Dunne, P.J., Keane, J., and Mills, K.H. (2013). Alveolar macrophages contribute to respiratory tolerance by inducing FoxP3 expression in naive T cells. Am. J. Respir. Cell Mol. Biol. 48, 773-780. https://doi.org/10.1165/rcmb.2012-0263OC
  10. Damon, M., Chavis, C., Daures, J.P., Crastes de Paulet, A., Michel, F.B., and Godard, P. (1989). Increased generation of the arachidonic metabolites LTB4 and 5-HETE by human alveolar macrophages in patients with asthma: effect in vitro of nedocromil sodium. Eur. Respir. J. 2, 202-209.
  11. Davies, L.C., Jenkins, S.J., Allen, J.E., and Taylor, P.R. (2013). Tissue-resident macrophages. Nat. Immunol. 14, 986-995. https://doi.org/10.1038/ni.2705
  12. Deng, W., Yang, J., Lin, X., Shin, J., Gao, J., and Zhong, X.P. (2017). Essential role of mTORC1 in self-renewal of murine alveolar macrophages. J. Immunol. 198, 492-504. https://doi.org/10.4049/jimmunol.1501845
  13. Draijer, C., Penke, L.R.K., and Peters-Golden, M. (2019). Distinctive effects of GM-CSF and M-CSF on proliferation and polarization of two major pulmonary macrophage populations. J. Immunol. 202, 2700-2709. https://doi.org/10.4049/jimmunol.1801387
  14. Duan, M., Hibbs, M.L., and Chen, W. (2017). The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis. Immunol. Cell Biol. 95, 225-235. https://doi.org/10.1038/icb.2016.97
  15. Elliott, M.R., Koster, K.M., and Murphy, P.S. (2017). Efferocytosis signaling in the regulation of macrophage inflammatory responses. J. Immunol. 198, 1387-1394. https://doi.org/10.4049/jimmunol.1601520
  16. Fadok, V.A., Bratton, D.L., Konowal, A., Freed, P.W., Westcott, J.Y., and Henson, P.M. (1998). Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101, 890-898. https://doi.org/10.1172/JCI1112
  17. Fernandez, S., Jose, P., Avdiushko, M.G., Kaplan, A.M., and Cohen, D.A. (2004). Inhibition of IL-10 receptor function in alveolar macrophages by Toll-like receptor agonists. J. Immunol. 172, 2613-2620. https://doi.org/10.4049/jimmunol.172.4.2613
  18. Fitzpatrick, A.M., Holguin, F., Teague, W.G., and Brown, L.A. (2008). Alveolar macrophage phagocytosis is impaired in children with poorly controlled asthma. J. Allergy Clin. Immunol. 121, 1372-1378.e1-3. https://doi.org/10.1016/j.jaci.2008.03.008
  19. Fujii, T., Hayashi, S., Hogg, J.C., Mukae, H., Suwa, T., Goto, Y., Vincent, R., and van Eeden, S.F. (2002). Interaction of alveolar macrophages and airway epithelial cells following exposure to particulate matter produces mediators that stimulate the bone marrow. Am. J. Respir. Cell Mol. Biol. 27, 34-41. https://doi.org/10.1165/ajrcmb.27.1.4787
  20. Gao, X., Dong, Y., Liu, Z., and Niu, B. (2013). Silencing of triggering receptor expressed on myeloid cells-2 enhances the inflammatory responses of alveolar macrophages to lipopolysaccharide. Mol. Med. Rep. 7, 921-926. https://doi.org/10.3892/mmr.2013.1268
  21. Gentek, R., Molawi, K., and Sieweke, M.H. (2014). Tissue macrophage identity and self-renewal. Immunol. Rev. 262, 56-73. https://doi.org/10.1111/imr.12224
  22. Grabiec, A.M. and Hussell, T. (2016). The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation. Semin. Immunopathol. 38, 409-423. https://doi.org/10.1007/s00281-016-0555-3
  23. Gross, N.J. and Barnes, P.J. (2017). New therapies for asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 195, 159-166. https://doi.org/10.1164/rccm.201610-2074PP
  24. Guilliams, M., De Kleer, I., Henri, S., Post, S., Vanhoutte, L., De Prijck, S., Deswarte, K., Malissen, B., Hammad, H., and Lambrecht, B.N. (2013). Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977-1992. https://doi.org/10.1084/jem.20131199
  25. Guth, A.M., Janssen, W.J., Bosio, C.M., Crouch, E.C., Henson, P.M., and Dow, S.W. (2009). Lung environment determines unique phenotype of alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L936-L946. https://doi.org/10.1152/ajplung.90625.2008
  26. Han, J., Hajjar, D.P., Tauras, J.M., Feng, J., Gotto, A.M., Jr., and Nicholson, A.C. (2000). Transforming growth factor-beta1 (TGF-beta1) and TGF-beta2 decrease expression of CD36, the type B scavenger receptor, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-gamma. J. Biol. Chem. 275, 1241-1246. https://doi.org/10.1074/jbc.275.2.1241
  27. Han, K.H., Tangirala, R.K., Green, S.R., and Quehenberger, O. (1998). Chemokine receptor CCR2 expression and monocyte chemoattractant protein-1-mediated chemotaxis in human monocytes. A regulatory role for plasma LDL. Arterioscler. Thromb. Vasc. Biol. 18, 1983-1991. https://doi.org/10.1161/01.ATV.18.12.1983
  28. Hashimoto, D., Chow, A., Noizat, C., Teo, P., Beasley, M.B., Leboeuf, M., Becker, C.D., See, P., Price, J., Lucas, D., et al. (2013). Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792-804. https://doi.org/10.1016/j.immuni.2013.04.004
  29. Haslett, C. (1999). Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am. J. Respir. Crit. Care Med. 160(5 Pt 2), S5-S11. https://doi.org/10.1164/ajrccm.160.supplement_1.4
  30. Hercus, T.R., Broughton, S.E., Ekert, P.G., Ramshaw, H.S., Perugini, M., Grimbaldeston, M., Woodcock, J.M., Thomas, D., Pitson, S., Hughes, T., et al. (2012). The GM-CSF receptor family: mechanism of activation and implications for disease. Growth Factors 30, 63-75. https://doi.org/10.3109/08977194.2011.649919
  31. Hercus, T.R., Thomas, D., Guthridge, M.A., Ekert, P.G., King-Scott, J., Parker, M.W., and Lopez, A.F. (2009). The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 114, 1289-1298.
  32. Hindelang, M., Kirsch, F., and Leidl, R. (2020). Effectiveness of nonpharmacological COPD management on health-related quality of life - a systematic review. Expert Rev. Pharmacoecon. Outcomes Res. 20, 79-91. https://doi.org/10.1080/14737167.2020.1734455
  33. Hodge, M.X., Reece, S.W., Madenspacher, J.H., and Gowdy, K.M. (2019). In vivo assessment of alveolar macrophage efferocytosis following ozone exposure. J. Vis. Exp. (152), e60109.
  34. Hodge, S., Hodge, G., Scicchitano, R., Reynolds, P.N., and Holmes, M. (2003). Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol. Cell Biol. 81, 289-296. https://doi.org/10.1046/j.1440-1711.2003.t01-1-01170.x
  35. Hoeffel, G., Chen, J., Lavin, Y., Low, D., Almeida, F.F., See, P., Beaudin, A.E., Lum, J., Low, I., Forsberg, E.C., et al. (2015). C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665-678. https://doi.org/10.1016/j.immuni.2015.03.011
  36. Hoeffel, G. and Ginhoux, F. (2018). Fetal monocytes and the origins of tissue-resident macrophages. Cell. Immunol. 330, 5-15. https://doi.org/10.1016/j.cellimm.2018.01.001
  37. Huang, L., Nazarova, E.V., Tan, S., Liu, Y., and Russell, D.G. (2018). Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215, 1135-1152. https://doi.org/10.1084/jem.20172020
  38. Huang, X., Xiu, H., Zhang, S., and Zhang, G. (2018). The role of macrophages in the pathogenesis of ALI/ARDS. Mediators Inflamm. 2018, 1264913. https://doi.org/10.1155/2018/1264913
  39. Huffman Reed, J.A., Rice, W.R., Zsengeller, Z.K., Wert, S.E., Dranoff, G., and Whitsett, J.A. (1997). GM-CSF enhances lung growth and causes alveolar type II epithelial cell hyperplasia in transgenic mice. Am. J. Physiol. 273, L715-L725.
  40. Huynh, M.L., Fadok, V.A., and Henson, P.M. (2002). Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J. Clin. Invest. 109, 41-50. https://doi.org/10.1172/JCI0211638
  41. Huynh, M.L., Malcolm, K.C., Kotaru, C., Tilstra, J.A., Westcott, J.Y., Fadok, V.A., and Wenzel, S.E. (2005). Defective apoptotic cell phagocytosis attenuates prostaglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am. J. Respir. Crit. Care Med. 172, 972-979. https://doi.org/10.1164/rccm.200501-035OC
  42. Kaur, M., Bell, T., Salek-Ardakani, S., and Hussell, T. (2015). Macrophage adaptation in airway inflammatory resolution. Eur. Respir. Rev. 24, 510-515. https://doi.org/10.1183/16000617.0030-2015
  43. Kawai, T. and Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373-384. https://doi.org/10.1038/ni.1863
  44. Kim, K.K., Dotson, M.R., Agarwal, M., Yang, J., Bradley, P.B., Subbotina, N., Osterholzer, J.J., and Sisson, T.H. (2018). Efferocytosis of apoptotic alveolar epithelial cells is sufficient to initiate lung fibrosis. Cell Death Dis. 9, 1056. https://doi.org/10.1038/s41419-018-1074-z
  45. Koning, N., van Eijk, M., Pouwels, W., Brouwer, M.S., Voehringer, D., Huitinga, I., Hoek, R.M., Raes, G., and Hamann, J. (2010). Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J. Innate Immun. 2, 195-200. https://doi.org/10.1159/000252803
  46. Krenkel, O., Puengel, T., Govaere, O., Abdallah, A.T., Mossanen, J.C., Kohlhepp, M., Liepelt, A., Lefebvre, E., Luedde, T., Hellerbrand, C., et al. (2018). Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 67, 1270-1283. https://doi.org/10.1002/hep.29544
  47. Krysko, D.V., D'Herde, K., and Vandenabeele, P. (2006). Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11, 1709-1726. https://doi.org/10.1007/s10495-006-9527-8
  48. Lavin, Y., Mortha, A., Rahman, A., and Merad, M. (2015). Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol. 15, 731-744. https://doi.org/10.1038/nri3920
  49. Li, G., Jin, F., Du, J., He, Q., Yang, B., and Luo, P. (2019). Macrophage-secreted TSLP and MMP9 promote bleomycin-induced pulmonary fibrosis. Toxicol. Appl. Pharmacol. 366, 10-16. https://doi.org/10.1016/j.taap.2019.01.011
  50. Machiels, B., Dourcy, M., Xiao, X., Javaux, J., Mesnil, C., Sabatel, C., Desmecht, D., Lallemand, F., Martinive, P., Hammad, H., et al. (2017). A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. Nat. Immunol. 18, 1310-1320. https://doi.org/10.1038/ni.3857
  51. Malur, A., Kavuru, M.S., Marshall, I., Barna, B.P., Huizar, I., Karnekar, R., and Thomassen, M.J. (2012). Rituximab therapy in pulmonary alveolar proteinosis improves alveolar macrophage lipid homeostasis. Respir. Res. 13, 46. https://doi.org/10.1186/1465-9921-13-46
  52. Mariencheck, W.I., Savov, J., Dong, Q., Tino, M.J., and Wright, J.R. (1999). Surfactant protein A enhances alveolar macrophage phagocytosis of a live, mucoid strain of P. aeruginosa. Am. J. Physiol. 277, L777-L786.
  53. Mayer, A.K., Bartz, H., Fey, F., Schmidt, L.M., and Dalpke, A.H. (2008). Airway epithelial cells modify immune responses by inducing an antiinflammatory microenvironment. Eur. J. Immunol. 38, 1689-1699. https://doi.org/10.1002/eji.200737936
  54. McCarthy, C., Lee, E., Bridges, J.P., Sallese, A., Suzuki, T., Woods, J.C., Bartholmai, B.J., Wang, T., Chalk, C., Carey, B.C., et al. (2018). Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis. Nat. Commun. 9, 3127. https://doi.org/10.1038/s41467-018-05491-z
  55. Misharin, A.V., Morales-Nebreda, L., Reyfman, P.A., Cuda, C.M., Walter, J.M., McQuattie-Pimentel, A.C., Chen, C.I., Anekalla, K.R., Joshi, N., Williams, K., et al. (2017). Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387-2404. https://doi.org/10.1084/jem.20162152
  56. Mohning, M.P., Thomas, S.M., Barthel, L., Mould, K.J., McCubbrey, A.L., Frasch, S.C., Bratton, D.L., Henson, P.M., and Janssen, W.J. (2018). Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK. Am. J. Physiol. Lung Cell. Mol. Physiol. 314, L69-L82. https://doi.org/10.1152/ajplung.00058.2017
  57. Moon, H.G., Cao, Y., Yang, J., Lee, J.H., Choi, H.S., and Jin, Y. (2015). Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway. Cell Death Dis. 6, e2016. https://doi.org/10.1038/cddis.2015.282
  58. Nagre, N., Cong, X., Pearson, A.C., and Zhao, X. (2019). Alveolar macrophage phagocytosis and bacteria clearance in mice. J. Vis. Exp. (145), e59088.
  59. Nishinakamura, R., Wiler, R., Dirksen, U., Morikawa, Y., Arai, K., Miyajima, A., Burdach, S., and Murray, R. (1996). The pulmonary alveolar proteinosis in granulocyte macrophage colony-stimulating factor/interleukins 3/5 beta c receptor-deficient mice is reversed by bone marrow transplantation. J. Exp. Med. 183, 2657-2662. https://doi.org/10.1084/jem.183.6.2657
  60. O'Beirne, S.L., Kikkers, S.A., Oromendia, C., Salit, J., Rostmai, M.R., Ballman, K.V., Kaner, R.J., Crystal, R.G., and Cloonan, S.M. (2020). Alveolar macrophage immunometabolism and lung function impairment in smoking and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 201, 735-739. https://doi.org/10.1164/rccm.201908-1683LE
  61. Ortega-Gomez, A., Perretti, M., and Soehnlein, O. (2013). Resolution of inflammation: an integrated view. EMBO Mol. Med. 5, 661-674. https://doi.org/10.1002/emmm.201202382
  62. Pearce, E.L. and Pearce, E.J. (2013). Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633-643. https://doi.org/10.1016/j.immuni.2013.04.005
  63. Ramirez, A., Ballard, E.N., and Roman, J. (2012). TGFbeta1 controls PPARgamma expression, transcriptional potential, and activity, in part, through Smad3 signaling in murine lung fibroblasts. PPAR Res. 2012, 375876. https://doi.org/10.1155/2012/375876
  64. Rubins, J.B. (2003). Alveolar macrophages: wielding the double-edged sword of inflammation. Am. J. Respir. Crit. Care Med. 167, 103-104. https://doi.org/10.1164/rccm.2210007
  65. Sallese, A., Suzuki, T., McCarthy, C., Bridges, J., Filuta, A., Arumugam, P., Shima, K., Ma, Y., Wessendarp, M., Black, D., et al. (2017). Targeting cholesterol homeostasis in lung diseases. Sci. Rep. 7, 10211. https://doi.org/10.1038/s41598-017-10879-w
  66. Saxton, R.A. and Sabatini, D.M. (2017). mTOR signaling in growth, metabolism, and disease. Cell 169, 361-371. https://doi.org/10.1016/j.cell.2017.03.035
  67. Schagat, T.L., Wofford, J.A., and Wright, J.R. (2001). Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. J. Immunol. 166, 2727-2733. https://doi.org/10.4049/jimmunol.166.4.2727
  68. Schneider, C., Nobs, S.P., Kurrer, M., Rehrauer, H., Thiele, C., and Kopf, M. (2014). Induction of the nuclear receptor PPAR-gamma by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat. Immunol. 15, 1026-1037. https://doi.org/10.1038/ni.3005
  69. Sinclair, C., Bommakanti, G., Gardinassi, L., Loebbermann, J., Johnson, M.J., Hakimpour, P., Hagan, T., Benitez, L., Todor, A., Machiah, D., et al. (2017). mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation. Science 357, 1014-1021. https://doi.org/10.1126/science.aaj2155
  70. Song, C., Li, H., Li, Y., Dai, M., Zhang, L., Liu, S., Tan, H., Deng, P., Liu, J., Mao, Z., et al. (2019). NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization. Exp. Cell Res. 382, 111486. https://doi.org/10.1016/j.yexcr.2019.06.031
  71. Soni, S., Wilson, M.R., O'Dea, K.P., Yoshida, M., Katbeh, U., Woods, S.J., and Takata, M. (2016). Alveolar macrophage-derived microvesicles mediate acute lung injury. Thorax 71, 1020-1029. https://doi.org/10.1136/thoraxjnl-2015-208032
  72. Soroosh, P., Doherty, T.A., Duan, W., Mehta, A.K., Choi, H., Adams, Y.F., Mikulski, Z., Khorram, N., Rosenthal, P., Broide, D.H., et al. (2013). Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med. 210, 775-788. https://doi.org/10.1084/jem.20121849
  73. Stanley, E., Lieschke, G.J., Grail, D., Metcalf, D., Hodgson, G., Gall, J.A., Maher, D.W., Cebon, J., Sinickas, V., and Dunn, A.R. (1994). Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci. U. S. A. 91, 5592-5596. https://doi.org/10.1073/pnas.91.12.5592
  74. Steele, C., Marrero, L., Swain, S., Harmsen, A.G., Zheng, M., Brown, G.D., Gordon, S., Shellito, J.E., and Kolls, J.K. (2003). Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J. Exp. Med. 198, 1677-1688. https://doi.org/10.1084/jem.20030932
  75. Sugiyama, D., Inoue-Yokoo, T., Fraser, S.T., Kulkeaw, K., Mizuochi, C., and Horio, Y. (2011). Embryonic regulation of the mouse hematopoietic niche. ScientificWorldJournal 11, 1770-1780. https://doi.org/10.1100/2011/598097
  76. Sun, W., Wei, F.Q., Li, W.J., Wei, J.W., Zhong, H., Wen, Y.H., Lei, W.B., Chen, L., Li, H., Lin, H.Q., et al. (2017). A positive-feedback loop between tumour infiltrating activated Treg cells and type 2-skewed macrophages is essential for progression of laryngeal squamous cell carcinoma. Br. J. Cancer 117, 1631-1643. https://doi.org/10.1038/bjc.2017.329
  77. Tan, S.Y. and Krasnow, M.A. (2016). Developmental origin of lung macrophage diversity. Development 143, 1318-1327. https://doi.org/10.1242/dev.129122
  78. Thomassen, M.J., Barna, B.P., Malur, A.G., Bonfield, T.L., Farver, C.F., Malur, A., Dalrymple, H., Kavuru, M.S., and Febbraio, M. (2007). ABCG1 is deficient in alveolar macrophages of GM-CSF knockout mice and patients with pulmonary alveolar proteinosis. J. Lipid Res. 48, 2762-2768. https://doi.org/10.1194/jlr.P700022-JLR200
  79. Tsai, C.F., Chen, J.H., and Yeh, W.L. (2019). Pulmonary fibroblasts-secreted CXCL10 polarizes alveolar macrophages under pro-inflammatory stimuli. Toxicol. Appl. Pharmacol. 380, 114698. https://doi.org/10.1016/j.taap.2019.114698
  80. Ushach, I. and Zlotnik, A. (2016). Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J. Leukoc. Biol. 100, 481-489. https://doi.org/10.1189/jlb.3RU0316-144R
  81. van de Laar, L., Saelens, W., De Prijck, S., Martens, L., Scott, C.L., Van Isterdael, G., Hoffmann, E., Beyaert, R., Saeys, Y., Lambrecht, B.N., et al. (2016). Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44, 755-768. https://doi.org/10.1016/j.immuni.2016.02.017
  82. Viola, A., Munari, F., Sanchez-Rodriguez, R., Scolaro, T., and Castegna, A. (2019). The metabolic signature of macrophage responses. Front. Immunol. 10, 1462. https://doi.org/10.3389/fimmu.2019.01462
  83. Wilson, M.E., McCandless, E.E., Olszewski, M.A., and Robinson, N.E. (2020). Alveolar macrophage phenotypes in severe equine asthma. Vet. J. 256, 105436. https://doi.org/10.1016/j.tvjl.2020.105436
  84. Woo, Y.D., Koh, J., Ko, J.S., Kim, S., Jung, K.C., Jeon, Y.K., Kim, H.Y., Lee, H., Lee, C.W., and Chung, D.H. (2021). Ssu72 regulates alveolar macrophage development and allergic airway inflammation by fine-tuning of GM-CSF receptor signaling. J. Allergy Clin. Immunol. 147, 1242-1260. https://doi.org/10.1016/j.jaci.2020.07.038
  85. Woods, P.S., Kimmig, L.M., Meliton, A.Y., Sun, K.A., Tian, Y., O'Leary, E.M., Gokalp, G.A., Hamanaka, R.B., and Mutlu, G.M. (2020). Tissue-resident alveolar macrophages do not rely on glycolysis for LPS-induced inflammation. Am. J. Respir. Cell Mol. Biol. 62, 243-255. https://doi.org/10.1165/rcmb.2019-0244OC
  86. Wynn, T.A. and Vannella, K.M. (2016). Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450-462. https://doi.org/10.1016/j.immuni.2016.02.015
  87. Yamane, T. (2018). Mouse yolk sac hematopoiesis. Front. Cell Dev. Biol. 6, 80. https://doi.org/10.3389/fcell.2018.00080
  88. Yeligar, S.M., Chen, M.M., Kovacs, E.J., Sisson, J.H., Burnham, E.L., and Brown, L.A. (2016). Alcohol and lung injury and immunity. Alcohol 55, 51-59. https://doi.org/10.1016/j.alcohol.2016.08.005
  89. Yu, X., Buttgereit, A., Lelios, I., Utz, S.G., Cansever, D., Becher, B., and Greter, M. (2017). The cytokine TGF-beta promotes the development and homeostasis of alveolar macrophages. Immunity 47, 903-912.e4. https://doi.org/10.1016/j.immuni.2017.10.007
  90. Zhang, J., Tachado, S.D., Patel, N., Zhu, J., Imrich, A., Manfruelli, P., Cushion, M., Kinane, T.B., and Koziel, H. (2005). Negative regulatory role of mannose receptors on human alveolar macrophage proinflammatory cytokine release in vitro. J. Leukoc. Biol. 78, 665-674. https://doi.org/10.1189/jlb.1204699
  91. Zhang, W., Li, Q., Li, D., Li, J., Aki, D., and Liu, Y.C. (2018). The E3 ligase VHL controls alveolar macrophage function via metabolic-epigenetic regulation. J. Exp. Med. 215, 3180-3193. https://doi.org/10.1084/jem.20181211

Cited by

  1. Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense vol.22, pp.22, 2021, https://doi.org/10.3390/ijms222212143