• Title/Summary/Keyword: TGF-${\beta}$ pathway

Search Result 93, Processing Time 0.023 seconds

Lin28a attenuates TGF-β-induced renal fibrosis

  • Jung, Gwon-Soo;Hwang, Yeo Jin;Choi, Jun-Hyuk;Lee, Kyeong-Min
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.594-599
    • /
    • 2020
  • Lin28a has diverse functions including regulation of cancer, reprogramming and regeneration, but whether it promotes injury or is a protective reaction to renal injury is unknown. We studied how Lin28a acts in unilateral ureteral obstruction (UUO)-induced renal fibrosis following unilateral ureteral obstruction, in a mouse model. We further defined the role of Lin28a in transforming growth factor (TGF)-signaling pathways in renal fibrosis through in vitro study using human tubular epithelium-like HK-2 cells. In the mouse unilateral ureteral obstruction model, obstruction markedly decreased the expression of Lin28a, increased the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin. In TGF-β-stimulated HK-2 cells, the expression of Lin28a was reduced and the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin was increased. Adenovirus-mediated overexpression of Lin28a inhibited the expression of TGF-β-stimulated type I collagen, α-SMA, vimentin and fibronectin. Lin28a inhibited TGF-β-stimulated SMAD3 activity, via inhibition of SMAD3 phosphorylation, but not the MAPK pathway ERK, JNK or p38. Lin28a attenuates renal fibrosis in obstructive nephropathy, making its mechanism a possible therapeutic target for chronic kidney disease.

Investigating herbal active ingredients and systems-level mechanisms on the human cancers (암치료를 위한 네트워크 기반 접근방식 활용 시스템 수준 연구)

  • Lee, Won-Yung
    • Herbal Formula Science
    • /
    • v.30 no.3
    • /
    • pp.175-182
    • /
    • 2022
  • Objective : This study aims to investigate the active ingredients and potential mechanisms of the beneficial herb on human cancers such as the liver by employing network pharmacology. Methods : Ingredients and their target information was obtained from various databases such as TM-MC, TTD, and Drugbank. Related protein for liver cancer was retrieved from the Comparative Toxicogenomics Database and literature. A hypergeometric test and gene set enrichment analysis were conducted to evaluate associations between protein targets of red ginseng (Panax ginseng C. A. Meyer) and liver cancer-related proteins and identify related signaling pathways, respectively. Network proximity was employed to identify active ingredients of red ginseng on liver cancer. Results : A compound-target network of red ginseng was constructed, which consisted of 363 edges between 53 ingredients and 121 protein targets. MAPK signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, TGF-beta signaling pathway, and cell cycle pathway was significantly associated with protein targets of red ginseng. Network proximity results indicated that Ginsenoside Rg1, Acetic Acid, Ginsenoside Rh2, 20(R)-Ginsenoside Rg3, Notoginsenoside R1, Ginsenoside Rk1, 2-Methylfuran, Hexanal, Ginsenoside Rd, Ginsenoside Rh1 could be active ingredients of red ginseng against liver cancer. Conclusion : This study suggests that network-based approaches could be useful to explore potential mechanisms and active ingredients of red ginseng for liver cancer.

Swertiamarin ameliorates carbon tetrachloride-induced hepatic apoptosis via blocking the PI3K/Akt pathway in rats

  • Zhang, Qianrui;Chen, Kang;Wu, Tao;Song, Hongping
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Swertiamarin (STM) is an iridoid compound that is present in the Gentianaceae swertia genus. Here we investigated antiapoptotic effects of STM on carbon tetrachloride ($CCl_4$)-induced liver injury and its possible mechanisms. Adult male Sprague Dawley rats were randomly divided into a control group, an STM 200 mg/kg group, a $CCl_4$ group, a $CCl_4+STM$ 100 mg/kg group, and a $CCl_4+STM$ 200 mg/kg group. Rats in experimental groups were subcutaneously injected with 40% $CCl_4$ twice weekly for 8 weeks. STM (100 and 200 mg/kg per day) was orally given to experimental rats by gavage for 8 consecutive weeks. Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of Bcl-2, Bax, and cleaved caspase-3 proteins were evaluated by western blot analysis. The expression of $TGF-{\beta}1$, collagen I, collagen III, CTGF and fibronectin mRNA were estimated by qRT-PCR. The results showed that STM significantly reduced the number of TUNEL-positive cells compared with the $CCl_4$ group. The levels of Bax and cleaved caspase-3 proteins, and $TGF-{\beta}1$, collagen I, collagen III, CTGF, and fibronectin mRNA were significantly reduced by STM compared with the $CCl_4$ group. In addition, STM markedly abrogated the repression of Bcl-2 by $CCl_4$. STM also attenuated the activation of the PI3K/Akt pathway in the liver. These results suggested that STM ameliorated $CCl_4$-induced hepatocyte apoptosis in rats.

Histological Changes of Cervical Disc Tissue in Patients with Degenerative Ossification

  • Xiong, Yang;Yang, Ying-Li;Gao, Yu-Shan;Wang, Xiu-Mei;Yu, Xing
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.186-195
    • /
    • 2022
  • Objective : To explore the histological feature of the cervical disc degeneration in patients with degenerative ossification (DO) and its potential mechanisms. Methods : A total of 96 surgical segments, from cervical disc degenerative disease patients with surgical treatment, were divided into ossification group (group O, n=46) and non-ossification group (group NO, n=50) based on preoperative radiological exams. Samples of disc tissues and osteophytes were harvested during the decompression operation. The hematoxylin-eosin staining, Masson trichrome staining and Safranin O-fast green staining were used to compare the histological differences between the two groups. And the distribution and content of transforming growth factor (TGF)-β1, p-Smad2 and p-Smad3 between the two groups were compared by a semi-quantitative immunohistochemistry (IHC) method. Results : For all the disc tissues, the content of disc cells and collagen fibers decreased gradually from the outer annulus fibrosus (OAF) to the central nucleus pulposus (NP). Compared with group NO, the number of disc cells in group O increased significantly. But for proteoglycan in the inner annulus fibrosus (IAF) and NP, the content in group O decreased significantly. IHC analysis showed that TGF-β1, p-Smad2, and p-Smad3 were detected in all tissues. For group O, the content of TGF-β1 in the OAF and NP was significantly higher than that in group NO. For p-Smad2 in IAF and p-Smad3 in OAF, the content in group O were significantly higher than group NO. Conclusion : Histologically, cervical disc degeneration in patients with DO is more severe than that without DO. Local higher content of TGF-β1, p-Smad2, and p-Smad3 are involved in the disc degeneration with DO. Further studies with multi-approach analyses are needed to better understand the role of TGF-β/Smads signaling pathway in the disc degeneration with DO.

Lactoferrin Stimulates Mouse Macrophage to Express BAFF via Smad3 Pathway

  • Chang, Heyn-Keyung;Jin, Bo-Ra;Jang, Young-Saeng;Kim, Woan-Sub;Kim, Pyeung-Hyeun
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.84-88
    • /
    • 2012
  • B cell-activating factor belonging to the TNF family (BAFF) is primarily expressed by macrophages and stimulates B cell proliferation, differentiation, survival, and Ig production. In this study, we explored the effect of lactoferrin (LF) on BAFF expression by murine macrophages. We determined the level of BAFF expression at the transcriptional and protein levels using RT-PCR and ELISA, respectively. LF markedly enhanced BAFF expression in mouse macrophages at both the transcriptional and protein levels. Overexpression of Smad3/4 further increased LF-induced BAFF transcription while DN-Smad3 abolished the LF-induced BAFF expression. These results demonstrate that LF can enhance BAFF expression through Smad3/4 pathway.

Expression of Recombinant Human Bone morphogenetic protein 2 (hBMP2) in Insect cells

  • Kim, Seong-Wan;Kim, Seong-Ryul;Park, Seung Won;Goo, Tae-Won;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Bone morphogenetic protein 2 (BMP2) plays an important role in the development of bone and cartilage. It is involved in the hedgehog pathway, TGF beta signaling pathway, and in cytokine-cytokine receptor interaction. It is involved also in cardiac cell differentiation and epithelial to mesenchymal transition. In this study, We expressed human BMP2 (hBMP2) recombinant protein using Baculovirus Expression Vector System (BEVS) in Sf9 insect cells. The hBMP2 cDNA was cloned into baculovirus transfer vector, pBacgus-4x-1 and recombinant baculovirus was screened out through X-gal and GUS-fusions assay. Western blot analysis shown that molecular weight of hBMP2 recombinant protein was about 44.71 kDa.

Small Molecule-Based Strategy Promotes Nucleus Pulposus Specific Differentiation of Adipose-Derived Mesenchymal Stem Cells

  • Hua, Jianming;Shen, Ning;Wang, Jingkai;Tao, Yiqing;Li, Fangcai;Chen, Qixin;Zhou, Xiaopeng
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.661-671
    • /
    • 2019
  • Adipose tissue-derived mesenchymal stem cells (ADSCs) are promising for regenerating degenerated intervertebral discs (IVDs), but the low efficiency of nucleus pulposus (NP)-specific differentiation limits their clinical applications. The Sonic hedgehog (Shh) signaling pathway is important in NP-specific differentiation of ADSCs, and Smoothened Agonist (SAG) is a highly specific and effective agonist of Shh signaling. In this study, we proposed a new differentiation strategy with the use of the small molecule SAG. The NP-specific differentiation and extracellular matrix (ECM) synthesis of ADSCs were measured in vitro, and the regenerative effects of SAG pretreated ADSCs in degenerated IVDs were verified in vivo. The results showed that the combination of SAG and transforming growth factor-${\beta}3$ ($TGF-{\beta}3$) is able to increase the ECM synthesis of ADSCs. In addition, the gene and protein expression levels of NP-specific markers were increased by treatment with SAG and $TGF-{\beta}3$. Furthermore, SAG pretreated ADSCs can also improve the disc height, water content, ECM content, and structure of degenerated IVDs in vivo. Our new differentiation scheme has high efficiency in inducing NP-specific differentiation of ADSCs and is promising for stem cell-based treatment of degenerated IVDs.

Gene Microarray Assessment of Multiple Genes and Signal Pathways Involved in Androgen-dependent Prostate Cancer Becoming Androgen Independent

  • Liu, Jun-Bao;Dai, Chun-Mei;Su, Xiao-Yun;Cao, Lu;Qin, Rui;Kong, Qing-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9791-9795
    • /
    • 2014
  • To study the gene expression change and possible signal pathway during androgen-dependent prostate cancer (ADPC) becoming androgen-independent prostate cancer (AIPC), an LNCaP cell model of AIPC was established using flutamide in combination with androgen-free environment inducement, and differential expression genes were screened by microarray. Then the biological process, molecular function and KEGG pathway of differential expression genes are analyzed by Molecule Annotation System (MAS). By comparison of 12,207 expression genes, 347 expression genes were acquired, of which 156 were up-ragulated and 191 down-regulated. After analyzing the biological process and molecule function of differential expression genes, these genes are found to play crucial roles in cell proliferation, differntiation, cell cycle control, protein metabolism and modification and other biological process, serve as signal molecules, enzymes, peptide hormones, cytokines, cytoskeletal proteins and adhesion molecules. The analysis of KEGG show that the relevant genes of AIPC transformation participate in glutathione metabolism, cell cycle, P53 signal pathway, cytochrome P450 metabolism, Hedgehog signal pathway, MAPK signal pathway, adipocytokines signal pathway, PPAR signal pathway, TGF-${\beta}$ signal pathway and JAK-STAT signal pathway. In conclusion, during the process of ADPC becoming AIPC, it is not only one specific gene or pathway, but multiple genes and pathways that change. The findings above lay the foundation for study of AIPC mechanism and development of AIPC targeting drugs.

Beneficial Effects of Acanthopanax senticosus Extract in Type II Diabetes Animal Model via Down-Regulation of Advanced Glycated Hemoglobin and Glycosylation End Products (제2형 당뇨 동물모델에서 가시오가피 추출물의 당화혈색소 및 최종당화산물 억제를 통한 혈당조절 효과)

  • Kwon, Han Ol;Lee, Minhee;Kim, Yong Jae;Kim, Eun;Kim, Ok-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.929-937
    • /
    • 2016
  • The purpose of this study was to investigate the effect of Acanthopanax senticosus extract (ASE) (ethanol : DW=1:1, v/v) on inhibition of type 2 diabetes using an OLETF rat model via regulation of HbA1c and AGEs levels. Supplementation with ASE 0.1% and 0.5% effectively lowered levels of glucose, insulin, oral glucose tolerance test, and Homa-insulin resistance, suggesting reduced insulin resistance. Blood levels of HbA1c and AGEs were significantly reduced in a dose-dependent manner. As oxidative stress plays a key role in accelerating production of HbA1c and AGEs, which worsen symptoms of type 2 diabetes, levels of malonaldehyde and pro-inflammatory cytokines were measured. Lipid peroxidation in both blood and liver tissues was significantly reduced, and induction of pro-inflammatory cytokines interleukin-${\beta}$ and tumor necrosis factor-${\alpha}$, which elevate production of HbA1c and AGEs, was inhibited (P<0.05). To evaluate the possible cellular events after AGEs receptor activation, genetic expression of protein kinase C (PKC)-${\delta}$ and transforming growth factor (TGF)-${\beta}$ was measured by real-time polymerase chain reaction. Supplementation with both ASE 0.1% and 0.5% significantly inhibited mRNA expression of PKC-${\delta}$ and TGF-${\beta}$, indicating that ASE may have beneficial effects on preventing insulin-resistant cells or tissues from progressing to diabetic complications. Taken together, ASE has potential to improve type 2 diabetes by inhibiting insulin resistance and protein glycosylation, including production of HbA1c and AGEs. Anti-oxidative activities of ASE are a main requisite for reducing production of HbA1c and AGEs and are also related to regulation of the PKC signaling pathway, resulting in suppression of TGF-${\beta}$, which increases synthesis of collagen, prostaglandin, and disease-related proteins.

Studies on Gene Expression of Yukmijihwang-tang using High-throughput Gene Expression Analysis Techniques (대규모 유전자 분석 기법을 이용한 육미지황원의 유전자 발현 연구)

  • Kang, Bong-Joo;Kim, Yun-Taik;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.2 s.9
    • /
    • pp.95-107
    • /
    • 2002
  • Yukmijihwang-tang(YM) is a noted herbal prescription in Chinese and Korean traditional medicines, and it has been known to reinforce the vital essence and has been widely used for a variety of disease such as stroke, osteoporosis, anti-tumor, and hypothyrodism. Regarding its traditional use, YM has been known to reinforce the Yin (vital essence) of liver and kidney. Also it has been known to reinforce nutrition and biological function in brain. Recently, studies suggested that YM increase antioxidant activities and exert the protective effect against oxidant-induced liver cell injury. We investigated the high-throughput gene expression analysis on the Yukmijihwang-tang administrated in SD rats. Microarray data were validated on a limited number of genes by semiquantitative RT-PCR and Western blot analyses. The recent availability of microarrays provides an attractive strategy for elaborating an unbiased molecular profile of large number of genes in drug discovery This experimental approach offers the potential to identify molecules or cellular pathways not previously associated with herbal medicine. Total RNA from normal control brain and Yukmijihwang-tang administrated brain were hybridized to microarrays containing 10,000 rat genes. The 52 genes were found to be up-regulated(twice or more) excluding EST gene. The nine genes were found to be down-regulated(twice or more) excluding EST gene. Gene array technology was used to identify for the first time many genes expression pathway analysis that arecell cycle pathway, apoptosis pathway, electron transport chain pathway, cytoplasmic ribosomal protein pathway, fatty acid degradation pathway, and TGF-beta signaling pathway. These differentially expressed genes pathway analysis have not previously been iavestigated in the context of herbal medicine efficacy and represent novel factors for further study of the mechanism of herbal medicine efficacy.

  • PDF