• Title/Summary/Keyword: TFT-LCD display

Search Result 456, Processing Time 0.027 seconds

In-line Automatic Defect Repair System for TFT-LCD Production

  • Arai, Takeshi;Nakasu, Nobuaki;Yoshimura, Kazushi;Edamura, Tadao
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.202-205
    • /
    • 2009
  • An automated circuit repair system was developed for enhancing the yield of nondefective liquid crystal panels, focusing on the resist patterns on the circuit material layer of thin-film transistor (TFT) substrates prior to etching. The developed system has an advantage over the parallel conventional system: In the former, the repair conditions depend on the type of resist whereas in the latter, the repair parameters must be fine-tuned for each circuit material. The developed system consists of a resist pattern defect inspection system and a pattern repair system for short and open defects. The repair system performs fine corrections of abnormal areas of the resist pattern. The open-repair system is equipped with a syringe to dispense resist. To maintain a stable resist diameter, a thermal insulator was installed in the syringe system. As a result, the diameter of the dispensed resist became much more stable than when no thermal insulator was used. The resist diameter was kept within the target of $400{\pm}100{\mu}m$. Furthermore, a prototype system was constructed, and using a dummy pattern, it was confirmed that the system worked automatically and correctly.

The Study of Plasma Display Panel for Digital Radiography Detector (플라즈마 디스플레이 판넬의 디지털 방사선 검출기 적용을 위한 연구)

  • Cho, Sung-Ho;Kang, Sang-Sik;Cha, Byung-Ryul;Kim, So-Yeong;Choi, Chi-Won;Yun, Min-Seok;Kwan, Chul;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.29-29
    • /
    • 2007
  • TFT, LCD, OLED, PDP and FED를 비롯한 많은 디스플레이 장치가 개발, 연구되고 있으며, 이러한 디스플레이 장치에 대한 수 많은 application 연구 또한 진행되고 있다. TFT-LCD는 이미 방사선 검출기로서 연구가 오랜전에 연구되어 상용화가 되었으며, LCD는 XLV로서 적용을 위한 연구가 진행되고 있으며, 그 외 수 많은 디스플레이 장치에 대한 활발한 연구가 진행되고 있는 실정이다. PDP는 대면적, 낮은 제작 비용, 높은 contrast의 이점으로 디스플레이 장치로서 활발한 연구가 진행되고 있다. 본 논문에서는 PDP를 처음으로 방사선 검출기로 적용하기 위한 연구를 수행하였다. 제작된 7 인치 AC-PDP는 다양한 가스종류 및 압력을 가진 300um의 pixel pitch룰 가진 3 전극 구조로서, coplanar readout과 대항형 readout을 통해 신호량을 분석하였다. 결과 50-100Kvp의 진단 영역의 X-ray energy에서 줄은 민감도와 훌륭한 선형성을 보였으며, 가스 종류 및 압력, 신호 검출방식에 따라 각각 다른 특성을 보였다. 이는 PDP 내 X선과의 Interaction, R/O method. Material에 강하게 의존한다.

  • PDF

The Optimization of LCD Color Filter Coating Method

  • Cho, Moon-Chul;Bae, Dong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.177-177
    • /
    • 2009
  • We examine the process to enhance the productivity of the thin-film transistor-addressed liquid-crystal display (TFT LCD) panels with the objective of optimizing the relation between the Type of color PR dispense nozzle and the amount of dispensing of color PR consumption, directly affecting a spectroscopic analysis. Most manufacturers of the panels have been utilizing a spin-type coater. We show that we successfully optimize the spectral values by controlling the color PR dispense type(Static dispense or Dynamic dispense) and the amount of color PR. From this study, we accomplished to decrease 43% in color PR consumption and to decrease 30% in color PR Stained, to decrease 30% rework rate.

  • PDF

Analysis on LGP of LCD Backlight/Frontlight

  • Sah, Jong-Youb;Park, Jong-Ryul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.698-700
    • /
    • 2003
  • LGP (Light-Guide Panel) of TFT-LCD Backligh/Frontlight is one of the major components which affect on the product quality of LCD. Since the brightness distribution of LGP is sensitive to the process error in manufacturing, the optical characteristics such as reflection and absorption of LGP pattern should be modeled including the process error. LGP is developed by using the fast and reliable design technology, which uses the concept of the inverse-design, makes the model on the characteristics of uncertainty in the manufacturing process, and designs the dispersion pattern analytically without try-and-error by using an artificial intelligence. The PEA(Process-Error-Adaptive) design gives the best solution in handling the process error. The offset of target in feedback system makes such the best pattern design possible that the brightness distribution is nearly same (more than 90%) with target in regardless of the miscellaneous errors in mass production. The present design method has been also applied to frontlight and multi-side-lamp(eg., four-side-four-lamp) backlight.

  • PDF

Locked Super Homeotropic (LSH) liquid crystal device for large size LCD (대면적의 LCD를 위한 갇혀진 Locked Super Homeotropic (LSH) 액정 디바이스)

  • Park, S.H.;Song, I.S.;Kim, W.C.;Oh, S.T.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.146-149
    • /
    • 2004
  • We have studied a liquid crystal (LC) mode (named locked super homeotropic (LSH)) in which the LCs aligned homeotropically are locked by surrounding walls such as cubic, hexagonal and cylinder. In the device, the vertically aligned LCs tilt down symmetrically around the center of the cell when a voltage is applied and thus it exhibits wide viewing angle. The structure of this LSH mode is suitable for large-sized display panels. since the LCs are locked in micro domains the LCs do not flow to the bottom of the panel by gravity. This mode is applicable to achieve high performance TFT-LCD TV because of high performance characteristics such as high contrast, high brightness, wide-viewing angle.

  • PDF

Fast Response Time in IPS Mode Using LC mixtures with High Elastic Constant

  • Lim, C.S.;Lee, J.H.;Choi, H.C.;Oh, C.H.;Yeo, S.D.;Lee, Seung-Eun;Jin, Min-Ok;Kang, Doo-Jin;Klasen-Memmer, M.;Tarumi, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.843-846
    • /
    • 2004
  • For the fast growing Liquid Crystal Display (LCD) TV market, it is essential to make the LCD panels to show moving images without any visual difficulties such as blurring or tailing. Owing to reduction of the cell gap and the improved Liquid Crystal (LC) mixtures with low viscosity, it is possible that our S-IPS TFT-LCDs feature a response time (R/T) as fast as 1-frame time (16ms) for a white-black operation and less than a 16rns in all gray levels without Over Driving Circuit (ODC) technology. Currently, mass production of the large size IPS panels with high speed has been successfully achieved. In order to achieve faster response time, new LC mixtures have been developed, optimizing the physical properties of rotational viscosity (${\gamma}$1) and elastic constants (Kii). Also, the LC mixtures with high elastic constant allow us to increase the cell gap. In this paper, realization of fast switching time in IPS mode with optimized '${\gamma}$1/Kii' parameter in the LC mixtures forms the core of this paper.

  • PDF

FPGA Implementation of Scan Conversion Unit using SIMD Architecture and Hierarchical Tile-based Traversing Method (계층적 타일기반 탐색기법과 SIMD 구조가 적용된 스캔변환회로의 FPGA 구현)

  • Ha, Chang-Soo;Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2023-2030
    • /
    • 2010
  • In this paper, we present research results of developing high performance scan conversion unit and implementing it on FPGA chip. To increase performance of scan conversion unit, we propose an architecture of scan converter that is a SIMD architecture and uses tile-based traversing method. The proposed scan conversion unit can operate about 124Mhz clock frequency on Xilinx Vertex4 LX100 device. To verify the scan conversion unit, we also develop shader unit, texture mapping unit and $240{\times}320$ color TFT-LCD controller to display outputs of the scan conversion unit on TFT-LCD. Because the scan conversion unit implemented on FPGA has 311Mpixels/sec pixel rate, it is applicable to desktop pc's 3d graphics system as well as mobile 3d graphics system needing high pixel rates.

The Comparison to Physical Properties of Large Size Indium Zinc Oxide Transparent Conductive Layer (대면적 상온 Indium Zinc Oxide 투명 도전막의 물성 특성 비교)

  • Joung, Dae-Young;Lee, Young-Joon;Park, Joon-Yong;Yi, Jun-Sin
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • An Indium Zinc Oxide(IZO) transparent conductive layer was deposited on a large size glass substrate by using magnetron dc sputtering method with varying a deposition temperature. As the deposition temperature decreased to a room temperature, the sheet resistance of IZO film increased. But this deposition temperature range is included in an applicable to a device. From a standpoint of the sheet resistance, the differences of the sheet resistance were not great and the uniformity of the layer was uniformed around 10%. Crystallization particles were shown on the surface of the layer as deposition temperature increased, but these particles were not shown on the surface of the layer as deposition temperature decreased to the room temperature. It didn't make a scrap of difference in a transmittance of varying deposition temperature. Therefore, it is concluded that IZO thin film manufactured by the room temperature deposition condition can be used as a large size transparent conductive layer of a liquid crystal display device.

Application of Parallel Processing System for free drop simulation of IT-related modules (IT 모듈의 자유 낙하 모사를 위한 병렬처리시스템의 적용)

  • Park Y.J.;Lee J.S.;Ko H.O.;Chang Y.S.;Choi J.B.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.405-406
    • /
    • 2006
  • Recently, the flat display modules such as plasma or TFT-LCD employ thin crystallized panels which are normally weak to high level transient mechanical energy inputs. As a result, anti-shock performance is one of the most important design specifications for TFT-LCD modules. However, most of large display module designs are generated based on engineers own experiences. Also, a large-scale analysis to evaluate complex material and structural behaviors is one of interesting topic in diverse engineering and scientific fields. The utilization of massively parallel processors has also been a recent trend of high performance computing. The objective of this paper is to introduce a parallel process system which consists of general purpose finite element analysis solver as well as parallelized PC cluster. The parallel processing system is constructed using thirty-two processing elements and the finite element program is developed by adopting hierarchical domain decomposition method. In order to verify the efficiency of the established system, an impact analysis on thin and complex sub-parts of flat display modules is performed. The evaluation results showed a good agreement with the corresponding reference solutions, and thus, the parallel process system seems to be a useful tool fur the complex structural analysis such as IT related products.

  • PDF

Optimized Gate Driving to Compensate Feed-through Voltage for $C_{ST}-on-Common$

  • Jung, Soon-Shin;Yun, Young-Jun;Park, Jae-Woo;Roh, Won-Yeol;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.73-74
    • /
    • 2000
  • In recent years, attempts have been made to greatly improve the display quality of active-matrix liquid crystal display devices, and many techniques have been proposed to solve such problems as gate signal delay, feed-through voltage and image sticking[1-3]. To improve these problems which are caused by the feed-through voltage, we have evaluated new driving methods to reduce the feed-through voltage. Two level gate-pulse was used for the gate driving of the cst-on-common structure pixels. These gate driving methods offer better feed-through characteristics than conventional simple gate pulse. Optimized step signal will compensate by step pulse time and voltage. The evaluation of the suggested driving methods were performed by using a TFT-LCD array simulator PDAST which can simulate the gate, data and pixel voltages of a certain pixel at any time and at any location on a TFT array. The effect of the new driving method was effectively analyzed.

  • PDF