• Title/Summary/Keyword: TFT-LCD(Thin Film Transistor-Liquid Crystal Display)

Search Result 81, Processing Time 0.03 seconds

Comparative Pixel Characteristics of ELA and SMC poly-Si TETs for the Development of Wide-Area/High-Quality TFT-LCD (대화면/고화질 TFT-LCD 개발을 위하여 ELA 및 SMC로 제작된 다결정 실리콘 박막 트랜지스터의 화소 특성 비교)

    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.72-80
    • /
    • 2001
  • In this paper, we present a systematic method of extracting the input parameters of poly-Si TFT(Thin-Film Transistor) for Spice simulations. This method has been applied to two different types of poly-Si TFTs such as ELA (Excimer Laser Annealing) and SMC (Silicide Mediated Crystallization) with good fitting results to experimental data. Among the Spice circuit simulators, the PSpice has the GUI(graphic user interface) feature making the composition of complicated circuits easier. We added successfully the poly-Si TFT model of AIM-Spice to the PSpice simulator, and analyzed easily to compare the electrical characteristics of pixels without or with the line RC delay. In the comparative results, the ELA poly-Si TFT is superior to the SMC poly-Si TFT in the charging time and the kickback voltage for the TFT-LCD (Thin Film Transistor-Liquid Crystal Display).

  • PDF

An outlook of liquid crystal display technology (액정디스플레이 기술의 발전전망)

  • Jang, Jin
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.745-754
    • /
    • 1996
  • 이글에서는 다음의 내용을 다루었다. 1. LCD의 기능 성능 향상, (1) CRT와 TFT-LCD의 기능, 성능 비교, (2) TFT-LCD의 기능, 성능향상을 위한 과제 2. TFT-LCD의 가격 및 수급현황 3. Poly-Si TFT-LCD전망 4. 투사형 TFT-LCD 5. 반사형 LCD 6. 필림형 LCD 7. 고분자 분산형 액정(PDLC)

  • PDF

Detection of TFT-LCD Defects Using Independent Component Analysis (독립성분분석을 이용한 TFT-LCD불량의 검출)

  • Park, No-Kap;Lee, Won-Hee;Yoo, Suk-In
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.5
    • /
    • pp.447-454
    • /
    • 2007
  • TFT-LCD(Thin Film transistor liquid crystal display) has become actively used front panel display technology with increasing market. Intrinsically there is region of non uniformity with low contrast that to human eye is perceived as defect. As the gray level difference between the defect and the background is hardly distinguishable, conventional thresholding and edge detection techniques cannot be applied to detect the defect. Between the patterned and un-patterned LCD defects, this paper deals with un-patterned LCD defects by using independent component analysis, adaptive thresholding and skewness. Our method showed strong results even on noised LCD images and worked successfully on the manufacturing line.

Evaluation in Performance of High Voltage Cable for BLU of TFT-LCD by Improvement for Material and Manufactured Process (TFT-LCD BLU용 고압 케이블의 재료특성 및 제조공정 개선을 통한 성능 향상)

  • Chung, Jin-Do;Kim, Jae-Hoon;Koo, Kyung-Wan;Hwang, Seung-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.495-498
    • /
    • 2009
  • To improve the efficiency of the high voltage cable for BLU(backlight unit) of TFT-LCD(Thin Film Transistor-Liquid Crystal Display), the analysis for the trial products(UL3239, UL3633) is conducted by using SEM(scanning electron microscope) and EDX(Energy Dispersive X-ray Spectroscopy). The result that it is possible to accumulate the know-how to about stranding pitch through effective improvement of stranding process. The troubles which are the badness of withstanding voltage and tensile strength etc. are solved by development of excellent material. Furthermore, phenomenon of conductor unfasten in the harness work is solved by improvement of the stranding wire process.

LGP Output Characteristics Depending in BLU Pattern Size (BLU 패턴 크기에 따른 LGP 출력 특성 연구)

  • Kim, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • Nowadays, the pattern size of BLU (Back Light Unit) adopted in TFT-LCD (Thin Film Transistor Liquid Crystal Display) is typically a few tens of micrometers. However, recently, researches on the TFT-LCD output characteristics depending on various types of BLU patterns are being performed in order to improve the output and uniformity. In this study, we analyzed the influence of pattern size, distribution, and areal ratio on the output characteristics.

Case study of SAMSUNG TFT-LCD Technology Innovation using TRIZ method (트리즈 기법을 활용한 삼성전자의 TFT-LCD 기술혁신 사례연구)

  • Ban, Byeong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3429-3434
    • /
    • 2014
  • In the TFT-LCD(Thin Film Transistor-Liquid Crystal Display) panel manufacturing industry, SAMSUNG, a late entry, can catch up to leading first mover, SHARP. The changes the note, monitor, TV, and mobile markets in the TFT-LCD industry were studied using a system analysis method. In addition, the fast response time technology in SAMSUNG TFT-LCD technology was developed using the TRIZ method. For example, a new liquid crystal mixture of a wide view angle and fast response time were developed by doping a new high birefringence liquid crystal material in a base mixture using the contradiction method and su-field method of TRIZ. The response time of a new liquid crystal mixture was improved to approximately 60%(16.2ms with base LC mixture, 9.8ms with a new LC mixture).

Dynamic Pixel Models for a-Si TFT-LCD and Their Implementation in SPICE

  • Wang, In-Soo;Lee, Gi-Chang;Kim, Tae-Hyun;Lee, Won-Jun;Shin, Jang-Kyoo
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.633-636
    • /
    • 2012
  • A dynamic analysis of an amorphous silicon (a-Si) thin film transistor liquid crystal display (TFT-LCD) pixel is presented using new a-Si TFT and liquid crystal (LC) capacitance models for a Simulation Program with Integrated Circuit Emphasis (SPICE) simulator. This dynamic analysis will be useful when predicting the performance of LCDs. The a-Si TFT model is developed to accurately estimate a-Si TFT characteristics of a bias-dependent gate to source and gate to drain capacitance. Moreover, the LC capacitance model is developed using a simplified diode circuit model. It is possible to accurately predict TFT-LCD characteristics such as flicker phenomena when implementing the proposed simulation model.

AMOLED Display Technologies and Recent Trends - Focusing on Flexible Display Technology - (AMOLED 디스플레이 주요 기술 및 최근 동향 - 플렉서블 디스플레이 기술 위주로 -)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Advanced Industrial SCIence
    • /
    • v.1 no.1
    • /
    • pp.16-22
    • /
    • 2022
  • Starting with cathode ray tubes, displays are forming markets in the order of active marix organic light emitting diode (AMOLED) after PDP (Plasma Display Panel) and LCD (Liquid Crystal Display). OLED is recognized as a key field for the development of each country preparing for the fourth industrial revolution, and especially Samsung Display and LG Display, which are the top industries in Korea, are leading the market with more than 90% of OLED shares. Currently, AMOLED has moved to the area that can be folded or bent. This technology is possible because TFT (Thin Film Transistor) and OLED may be formed on a flexible substrate. In the future, the technology will move to stretchable displays, and for this, the development of substrate materials is first, and then TFT and OLED devices should also be implemented with stretchable materials.

A Process Control in TFT-LCD Industries (TFT-LCD 산업에서의 공정관리)

  • Jo, Jung-Hyeong;Nam, Ho-Su;Lee, Hyeon-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.372-376
    • /
    • 2005
  • TFT-LCD(박막 트랜지스터 액정 디스플레이, Thin Film Transistor - Liquid Crystal Display) 산업은 현재 국가의 기간산업으로서 국제경쟁력을 갖추고 있는 몇 안되는 산업 분야 중 하나이다. 따라서, 본 논문에서는 통계적 공정 관리 및 품질 관리 관점에서 TFT-LCD 공정의 특징과 이에 필요한 요소들을 제안하고자 한다.

  • PDF

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.