• Title/Summary/Keyword: TFA-MOD process

Search Result 45, Processing Time 0.046 seconds

Effect of heat-treatment parameter of YBCO film by TFA-MOD process (TFA-MOD법에 의한 YBCO 박막의 열처리변수 효과)

  • Jang, Seok-Hern;Lim, Jun-Hyung;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Joo, Jin-Ho;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.135-139
    • /
    • 2006
  • We fabricated YBCO coated conductors (CCs) by TFA-MOD process and evaluated microstructure, texture formation, and critical temperature ($T_c$) and current ($I_c$). YBCO precursor solution was synthesized using metal-trifluoroacetates and dip coated on $LaAlO_3$(LAO) substrate. The phase formation and microstructure was characterized by X-ray diffraction and scanning electron microscopy (SEM) and the degree of texture was evaluated by pole-figure analysis. The CC was heat-treated in various calcining temperatures ($370^{\circ}C-460^{\circ}C$) and firing temperatures ($750^{\circ}C-800^{\circ}C$). As fired at $775^{\circ}C$ for 4h, the CC had the highest $T_c$ of 89.5 K and $I_c$ of 40 A/cm-width ($J_c=2.0\;MA/cm^2$). Microstructural observation indicated that the YBCO film was dense and homogeneous and had a strong cube texture without formation of second phase and its in-plane full-width at half-maxima; $5.2^{\circ}$ under optimum condition.

  • PDF

Optimization of annealing conditions in oxide-precursor-based MOD process for YBCO thin films (산화물 전구체를 이용한 YBCO 박막제조에서 열처리조건의 최적화)

  • Heo S. Y.;Kim Y. K.;Yoo J. M.;Ko J. W.;Hong G. W.;Lee H. G.;Yoo S. I.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.118-123
    • /
    • 2005
  • A low cost YBCO oxide powder was employed as a starting precursor for MOD process. YBCO oxide is advantageous over metal acetates or TFA salts which are popular starting precursors for conventional MOD-TFA process because that YBCO oxide precursor is cheap and easy to control molar ratio. YBCO thin films were prepared by this oxide-precursor-based MOD process and annealing condition was optimized. The YBCO thin film annealed at below $780^{\circ}C$ shows no transport $I_c$ and poor microstructure. Raman spectroscopic study of YBCO thin film indicates that YBCO thin film prepared at below $780^{\circ}C$ contains a number of imperfections such as non-superconducting $BaCuO_2$ phase, cation disorder, etc. However, the YBCO thin film treated at above $800^{\circ}C$ shows improvement in microstructure and current transport properties. This research was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea.

  • PDF

Phase and microstructure evolution during the TFA-MOD process of YBCO films

  • Wee, Sung-Hun;Shin, Geo-Myung;Hong, Gye-Won;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.19-22
    • /
    • 2007
  • We report the phase and microstructure evolutions of metal trifluoroacetate (TFA) precursor films in the TFA-MOD process of YBCO films on the LAO (100) substrates. It was confirmed that the precursor films were decomposed into $Y_2O_3$, $BaF_2$, and CuO nanoparticles after the initial heat treatment up to 400$^{\circ}C$. After a subsequent heat treatment at higher temperatures ranging from 700 to 850$^{\circ}C$ for 2 h, these nano-sized phases are converted into YBCO films. High Jc(77K, sf)-YBCO thin films (over 2 MA/$cm^2$) were successfully fabricated with firing temperatures ranging from 775 to 850$^{\circ}C$ for 2 h, where films were composed of dense microstructures with large grains.

Effect of chemically modified precursor solution on MOD-processed YBCO thin films

  • Jaimoo Yoo;Kim, Young-Kuk;Jaewoong Ko;Soonyoung Heo;Hyungsik Chung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.23-25
    • /
    • 2003
  • Effect of chemically modified precursor solution on YBCO coated conductor prepared by MOD-TFA method was investigated. YBCO thin films were deposited on (l00)-oriented single crystalline LaAlO$_3$ substrates by conventional MOD-TFA process. The microstructures of YBCO thin films contain maze-like patterns. The origin of this microstructure was delineated by compositional inhomogeneity during the pyrolysis process and it was shown that addition of diethanolamine (DEA) improve the microstructure of grown YBCO films. In addition, it was demonstrated that the chemical modification of precursor solution makes no harmful effect on biaxial texture of YBCO thin films.

Fabrication of TFA-MOD YBCO Films Using the $Y_2Ba_1Cu_1O_x$ and $Ba_3Cu_5O_8$ Powders

  • Lim, Jun-Hyung;Jang, Seok-Hern;Yoon, Kyung-Min;Lee, Seung-Yi;Joo, Jin-Ho;Lee, Hoo-Jeong;Kim, Chan-Joong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1247-1248
    • /
    • 2006
  • We fabricated YBCO film using a TFA-MOD method. In order to enhance the reaction kinetics and to control the formation of the second phases, $Y_2Ba_1Cu_1O_x$ and $Ba_3Cu_5O_8$ powders were used as precursors (the so called "211 process"). The films were calcined at $460^{\circ}C$ and then fired at $750^{\circ}C-800^{\circ}C$ in a 12.1% humidified $Ar-O_2$ atmosphere. We found that the microstructure varied significantly with the firing temperature. The textures of all of the films were similar and mainly biaxial. For the film fired at $775^{\circ}C$, the critical current was obtained to be 39 A/cm-width (corresponding critical current density is 2.0 MA/$cm^2$).

  • PDF