YBCO Coated Conductors on the IBAD-MgO Template Fabricated by the TFA-MOD Process

G. M. Shin ^a, N. H. Ka ^a, K. J. Song ^b, R. K. Ko ^b, C. Park ^a, S. H. Moon ^{a,c}, S. I. Yoo ^a

^a Seoul National University, Seoul, Korea

^b Korea Electrotechnology Research Institute, Changwon, Kyungnam, Korea

^c Superconductor, Nano & Advanced Materials Corporation, Anyang, Gyeonggi, Korea

YBCO coated conductors were prepared on the IBAD-MgO template by the metal-organic deposition using trifluoroacetates (TFA) as precursor. In this work, unlike a conventional TFA-MOD process, we applied a modified TFA-MOD process in which TFA-based solutions were prepared dissolving YBCO powder into triflouroacetic acid. The effects of processing parameter on the superconducting property of YBCO films were investigated by high resolution X-ray diffraction (HR-XRD), field emission scanning electron microscopy (FE-SEM), and dc four probes transport method. Optimal processing condition resulted in YBCO coated conductors possessing high critical current density (Jc) exceeding 1 MA/cm² at 77K in a self-field. The Jc values of YBCO coated conductors were found sensitive to the microstructure and in-plane texture. In this paper, we present the relationship among processing parameter, microstructure, texture, and superconducting property of YBCO coated conductors.

Keywords: YBCO coated conductor, TFA-MOD, critical current density

Acknowledgement:

This work was supported by a grant from Center for Applied Superconductivity Technology of the 21st century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea.