DOI QR코드

DOI QR Code

Phase and microstructure evolution during the TFA-MOD process of YBCO films

  • Wee, Sung-Hun (School of Materials Science and Engineering, Seoul National University) ;
  • Shin, Geo-Myung (School of Materials Science and Engineering, Seoul National University) ;
  • Hong, Gye-Won (Korea Polytechnic University) ;
  • Yoo, Sang-Im (School of Materials Science and Engineering, Seoul National University)
  • Published : 2007.05.31

Abstract

We report the phase and microstructure evolutions of metal trifluoroacetate (TFA) precursor films in the TFA-MOD process of YBCO films on the LAO (100) substrates. It was confirmed that the precursor films were decomposed into $Y_2O_3$, $BaF_2$, and CuO nanoparticles after the initial heat treatment up to 400$^{\circ}C$. After a subsequent heat treatment at higher temperatures ranging from 700 to 850$^{\circ}C$ for 2 h, these nano-sized phases are converted into YBCO films. High Jc(77K, sf)-YBCO thin films (over 2 MA/$cm^2$) were successfully fabricated with firing temperatures ranging from 775 to 850$^{\circ}C$ for 2 h, where films were composed of dense microstructures with large grains.

Keywords

References

  1. Mclntyre P C, Cima M J and Ng M F 1990 J. Appl. Phys. 68, pp. 4183-4187 https://doi.org/10.1063/1.346233
  2. Mclntyre P C, Cima M J, Smith J A and Hallock R B 1992, J. Appl. Phys. 71, pp. 1868-1977 https://doi.org/10.1063/1.351172
  3. Smith J A, Cima M J and Sonnenberg N 1999 IEEE Trans. Appl. Supercond 9, pp. 1531-1534 https://doi.org/10.1109/77.784685
  4. Sathyamurthy S and Salama K 2001 IEEE Trans. Appl. Supercond. 11, pp. 2935-2938 https://doi.org/10.1109/77.919677
  5. Dawley J T, Clem P G, Siegal M P, Overmyer D L and Rodriguez M A 2001 IEEE Trans. Appl. Supercond. 11, pp. 2873-2876 https://doi.org/10.1109/77.919662
  6. Araki T, Yamagiwa K, Hirabayashi I, Suzuki K and Tanaka S 2001 Supercond. Sci. Technol., 14, pp. L21-L24 https://doi.org/10.1088/0953-2048/14/7/101
  7. Li Q, Zhang W, Schoop U, Rupich M W, Annavarapu S, Verebelyi D T, Thieme C L H, Prunier V, Cui X, Teplitsky M D, Fritzemeier L G, Riley G N, Paranthaman M, Goyal A, Lee D F and Holesinger T G 2001 Physica C 357-360, pp. 987-990 https://doi.org/10.1016/S0921-4534(01)00466-X
  8. Araki T, Yamagiwa K, Hirabayashi I, Suzuki K and Tanaka S 2001 Supercond. Sci. Technol., 14, pp. L21-L24 https://doi.org/10.1088/0953-2048/14/7/101
  9. Jee Y -A, Ma B, Maroni V A, Li M, Fisher B L and Balachandran U 2001 Supercond. Sci. Technol. 14, pp. 285-291 https://doi.org/10.1088/0953-2048/14/5/308
  10. Castano O, Cavallaro A, Palau A, Gonzalez J C, Rossell M, Puig T, Sandiumenge F, Mestres N, Pinol S, Pomar A and Obradors X 2003 Supercond. Sci. Technol. 16, pp. 45-53 https://doi.org/10.1088/0953-2048/16/1/309
  11. Shibata J, Honjo T, Fuji H, Teranishi R, Izumi T, Shiohara Y, Yamamoto T and Ikuhara Y 2002 Physica C 378-381, pp. 1039 https://doi.org/10.1016/S0921-4534(02)01581-2
  12. Tokunaga Y, Fuji H, Teranishi R, Shibata J, Asada S, Honjo T, Izumi T, Shiohara Y, Iijima Y and Saitoh T 2003 Physica C 392-396, pp. 909-912 https://doi.org/10.1016/S0921-4534(03)01150-X
  13. Verebelyi D T, Schoop U, Thieme C, Li X, Zhang W, Kodenkandath T, Malozemoff A P, Nguyen N, Siegal E, Buczek D, Scudiere J, Rupich M, Goyal A, Specht E D, Martin P and Parathaman M 2003 Supercond. Sci. Technol. 16, pp. L19-L22 https://doi.org/10.1088/0953-2048/16/1/304
  14. Fuji H, Honjo T, Teranishi R, Tokunaga Y, Shibata J, Izumi T, Shiohara Y, Iijima Y and Saitoh T 2003 Physica C 392-396, pp. 905-908 https://doi.org/10.1016/S0921-4534(03)01149-3
  15. Rupich M W, Schoop U, Verebelyi D T, Thieme C, Zhang W, Li X, Kodenkandath T, Nguyen N, Siegal E, Buczek D, Lynch J, Jowett M, Thompson E, Wang J S, Scudiere J, Malozemoff A P, Li Q, Annavarapu S, Cui S, Fritzemeier L, Aldrich B, Craven C, Niu F, Schwall R, Goyal A and Parnathaman M 2003 IEEE Trans. Appl. Supercond. 13, pp. 2458 https://doi.org/10.1109/TASC.2003.811820
  16. Rupich M W, Verebelyi D T, Zhang W, Kodenkandath E and Li X 2004 MRS bulletin 29, pp. 572 https://doi.org/10.1557/mrs2004.163
  17. Fuji H, Honjo T, Teranishi R, Tokunaga Y, Matsuda J, Asada S, Yamada Y, Izumi T, Shiohara Y, Iijima Y, Saitoh T, Kaneko A and Murata K 2004 Physica C 412-414, pp. 916-919 https://doi.org/10.1016/j.physc.2004.02.206
  18. Paranthaman M , Chirayil T G, Sathyamurthy S, Beach D B, Goyal A, List F A, Lee D F, Cui X, Lu S W, Kang B, Specht E D, Martin P M, Kroeger D M, Feenstra R, Cantoni C and Christen D K 2001 ORNL Superconducting Technology Program for Electric Power Systems Annual report for FY 2000, pp. 1-34
  19. Araki T and Hirabayashi I 2003 Supercond. Sci. Technol. 16 R71 https://doi.org/10.1088/0953-2048/16/1/313
  20. Rupich M W, Zhang W, Li X, Kodenkandath T, Verebelyi D T, Schoop U, Thieme C, Teplitsky M, Lynch J, Nguyen N, Siegal E, Scudiere J, Maroni V, Venkataraman K, Miller D and Holesinger T D 2004 Physica C 412-414, pp. 877 https://doi.org/10.1016/j.physc.2004.02.202
  21. Wee S H, Shin K M, Song K J, Hong G W, Moon S H, Park C and Yoo S I 2003 J. the Korea Institute of Appl. Supercond. and Cryogenics 6, pp. 12-17