The document-term frequency matrix is a term extracted from documents in which the group information exists in text mining. In this study, we generated the document-term frequency matrix for document classification according to research field. We applied the traditional term weighting function term frequency-inverse document frequency (TF-IDF) to the generated document-term frequency matrix. In addition, we applied term frequency-inverse gravity moment (TF-IGM). We also generated a document-keyword weighted matrix by extracting keywords to improve the document classification accuracy. Based on the keywords matrix extracted, we classify documents using a deep neural network. In order to find the optimal model in the deep neural network, the accuracy of document classification was verified by changing the number of hidden layers and hidden nodes. Consequently, the model with eight hidden layers showed the highest accuracy and all TF-IGM document classification accuracy (according to parameter changes) were higher than TF-IDF. In addition, the deep neural network was confirmed to have better accuracy than the support vector machine. Therefore, we propose a method to apply TF-IGM and a deep neural network in the document classification.
In order to investigate the soil-to-plant transfer factor (TF) of $^{99}Tc$ for Korean major upland crops (soybean, radish and Chinese cabbage), pot experiments were performed in a greenhouse. Soils were collected from four upland fields (two for soybean and two for radish and Chinese cabbage) around Gyeongju radioactive-waste disposal site. Three to four weeks before sowing, dried soils were mixed with a $^{99}Tc$ solution and the mixtures were put into pots and irrigated. TF values were expressed as the ratios of the $^{99}Tc$ concentrations in plants (Bq $kg^{-1}$-dry or fresh) to those in soils (Bq $kg^{-1}$-dry). There was no great difference in the TF value between soils. The TF values for soybean seeds were extremely lower than those for the straws, indicating a very low mobility of $^{99}Tc$ to seeds. As representative TF values of $^{99}Tc$, $1.8{\times}10^{-1}$, $1.2{\times}10^1$, $3.2{\times}10^2$ and $1.3{\times}10^2$ (for dry plants), arithmetic means for two soils, were proposed for soybean seeds, radish roots, radish leaves and Chinese cabbage leaves, respectively. In the case of the vegetables, proposals for fresh plants were also made. The proposed values are not sufficiently representative so successive updates are needed.
Journal of the Korea Society of Computer and Information
/
v.25
no.8
/
pp.181-188
/
2020
In this study, we propose a comparative study to confirm the impact of various word embedding techniques on the performance of sentiment analysis. Sentiment analysis is one of opinion mining techniques to identify and extract subjective information from text using natural language processing and can be used to classify the sentiment of product reviews or comments. Since sentiment can be classified as either positive or negative, it can be considered one of the general classification problems. For sentiment analysis, the text must be converted into a language that can be recognized by a computer. Therefore, text such as a word or document is transformed into a vector in natural language processing called word embedding. Various techniques, such as Bag of Words, TF-IDF, and Word2Vec are used as word embedding techniques. Until now, there have not been many studies on word embedding techniques suitable for emotional analysis. In this study, among various word embedding techniques, Bag of Words, TF-IDF, and Word2Vec are used to compare and analyze the performance of movie review sentiment analysis. The research data set for this study is the IMDB data set, which is widely used in text mining. As a result, it was found that the performance of TF-IDF and Bag of Words was superior to that of Word2Vec and TF-IDF performed better than Bag of Words, but the difference was not very significant.
Measured values may differ between Multi-Dimensional Voice Program (MDVP), Praat, and Time-Frequency Analysis software (TF32), all of which are widely used in voice quality analysis, due to differences in the algorithms used in each analyzer. Therefore, this study aimed to compare the values of parameters of normal voice measured with each analyzer. After tokens of the vowel sound /a/ were collected from 35 normal adult subjects (19 male and 16 female), they were analyzed with MDVP, Praat, and TF32. The mean values obtained from Praat for jitter variables (J local, J abs, J rap, and J ppq), shimmer variables (S local, S dB, and S apq), and noise-to-harmonics ratio (NHR) were significantly lower than those from MDVP in both males and females (p<.01). The mean values of J local, J abs, and S local were significantly lower in the order MDVP, Praat, and TF32 in both genders. In conclusion, the measured values differed across voice analyzers due to the differences in the algorithms each analyzer uses. Therefore, it is important for clinicians to analyze pathologic voice after understanding the normal criteria used by each analyzer when they use a voice analyzer in clinical practice.
Objectives : Tribulus terrestris $Linn{\acute{e}}$ (Tribuli Fructus; TF) has been used to treat hypochondrium, agalactia, nebula, itching and vitiligo in traditional Korean medicine. In this study, we investigated the effects of TF 30% ethanol extract on inflammatory responses in IgE-stimulated RBL-2H3 mast cells. Methods : TF extract was prepared by 30% ethanol. RBL-2H3 cells, a rat mast cell line, were treated with TF extract at different concentrations for 1 hr and then stimulated with DNP-IgE/HSA for indicated times. Cell viability was measured by WST-1 assay. The expression of inflammatory cytokines (IL-4, IL-13 and $IFN-{\gamma}$) mRNA was determined by reverse transcriptase-PCR, and the phosphorylation of ERK1/2, p38 and JNK MAP kinases (MAPKs) was determined by Western blot. The nuclear expression of $NF-{\kappa}B$ p65 in the cells was detected by Western blot and immunocytochemistry, respectively. Results : The treatment of TF extract at 0.1 and $0.2mg/m{\ell}$ significantly decreased the expression of IL-4 and IL-13 mRNA in IgE-stimulated RBL-2H3 mast cells, while significantly increased the expression of $IFN-{\gamma}$ mRNA. TF extract treatment was also inhibited the phosphorylation of ERK1/2, p38 and JNK MAPKs in IgE-stimulated RBL-2H3 mast cells in a dose-dependent manner. In addition, TF extract significantly blocked the translocation of $NF-{\kappa}B$ p65 into the nuclear of cells after IgE stimulation. Conclusions : These results indicate that TF extract inhibits inflammatory response in IgE-stimulated mast cells through blocking MAPKs/$NF-{\kappa}B$ pathway. This suggests that TF extract has an anti-inflammatory activity in mast cell activation.
Objectives : The purpose of this study was to investigate the anti-inflammatory effects of extract from Trogopterorum Faeces (TF) on the RAW 264.7 cells. Methods : To prove the TF's anti-inflammatory effects, we investigated nitric oxide (NO) production and own cell viability. We examined the cytokine productions on lipopolysacchride (LPS)-induced RAW 264.7 cells and also cellular regulatory mechanisms. Results : TF does not have any cytotoxic effect. TF reduced LPS-induced NO production, interleukin (IL)-1b, IL-6, IL-10 and tumor necrosis factor-a (TNF-a) in RAW 264.7 cells. TF inhibited the activation of mitogen-activated protein kinases (MAPKs) such as p38, extracelluar signal-regulated kinase (ERK 1/2) and c-Jun NH2-terminal kinase (JNK) and also the degradation of inhibitory kappa B a (Ik-Ba) in the LPS-stimulated RAW 264.7 cells. TF reduced the serum levels of IL-1b, IL-6, TNF-a. The survival rate of LPS-induced endotoxin shock was increased by TF administration. Conclusions : TF down-regulated LPS-induced NO and cytokines production, which could provide a clinical basis for anti-inflammatory properties.
Data is explosively growing, but many companies are still using data analysis only for descriptive analysis or diagnostic analysis, and not appropriately for predictive analysis or enterprise technology strategy analysis. In this study, we analyze the structured & unstructured patent data such as IPC code, inventor, filing date and so on by using big data analysis techniques such as network analysis and TF-IDF. Through this analysis, we propose analysis process to understand the core technology and technology distribution of competitors and prove it through data analysis.
Journal of the korean academy of Pediatric Dentistry
/
v.45
no.2
/
pp.235-241
/
2018
In this study, total fluoride (TF) in commercial toothpastes for children in Korea was evaluated and compared with the fluoride concentration declared by the manufacturer (Declared F). Additionally, total soluble fluoride (TSF) was evaluated and compared with TF. Ten toothpastes were coded with letters to allow blind analysis. For evaluation of TF, each toothpaste was homogenized in deionized water. For evaluation of TSF, each toothpaste was centrifuged and then, the supernatant of the sample was evaluated. Fluoride concentrations were assessed using a fluoride electrode coupled to an ion analyzer. Only one toothpaste showed lower TF concentration than Declared F. In all toothpastes, TSF was similar to the TF.
Magazine of the Korean Society of Agricultural Engineers
/
v.45
no.2
/
pp.78-85
/
2003
This study aims to investigate the effect of partially distributed loads on the static behavior of parabolic arches by using the elastic-plastic finite element model. For this purpose, the vertical, the radial, and the anti-symmetric load cases are considered, and the ratio of loading range and arch span is increased from 20% to 100%. Also, the elastic-visco-plastic analysis has been carried out to estimate the elapse time to reach the stable state of arches when the ultimate load obtained by the finite element analysis is applied. It is noted that the ultimate load carrying capacities of parabolic arches are 6.929 tf/$m^2$ for the radial load case, and 8.057 tf/$m^2$ for the vertical load case. On the other hand, the ultimate load is drastically reduced as 2.659 tf/$m^2$ for the anti-symmetric load case. It is also shown that the maximum ultimate load occurs at the full ranging distributed load, however, the minimum ultimate loads of the radial and vortical load cases are obtained by 2.336 tf/$m^2$, 2.256 tf/$m^2$, respectively, when the partially distributed load is applied at the 40% range of full arch span.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.