• Title/Summary/Keyword: TEG(Thermal Electric Generator)

Search Result 3, Processing Time 0.021 seconds

A study on the vibration durability test for the energy harvesting part of vehicle (에너지 활용 부품의 진동내구 평가기법 연구)

  • Ju, Hyung-Jun;Kim, Chan-Jung;Lee, Gee-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.587-588
    • /
    • 2014
  • Studies that the vehicle exhaust system applied by the TEG(thermal electric generator) are actively in progress in order to improve the fuel efficiency of the vehicle. Vehicle exhaust system is on a poor vibration condition, it is susceptible to TEG. This paper is about the development of vibration durability test of TEG mounted on a vehicle exhaust system. Vehicle driving tests are performed to measure the vibration condition of the vehicle exhaust system. The vibration durability test mode of TEG is evaluated using equivalent vibration energy method. The vibration durability tests of TEG are performed using the multi-axial vibration simulation table.

  • PDF

Development of 100W thermoelectric power generation module (100W급 열전발전 모듈 기술 개발)

  • Moon, Jihong;Hwang, Jungho;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.321-322
    • /
    • 2015
  • Thermoelectric power generation has emerged as a promising alternative technology because it offers a potential application in the direct conversion of waste heat into electric energy. The performance of thermoelectric power generator depends on thermoelectric materials and thermoelectric power module designs. The main objective of this study is to design a 100W thermoelectric generation (TEG) module and to get optimal operating conditions of the module. The design and performance of the TEG module will be presented.

  • PDF

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation (열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2020
  • Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.