• Title/Summary/Keyword: TEER

Search Result 31, Processing Time 0.034 seconds

Effect of Korean Red Ginseng on the Stability of the Tight Junction of Intestinal Epithelial Cells (홍삼에 의한 Caco-2 단세포층 간극의 안정화)

  • Shon, Dong-Hwa;Kim, Mi-Hye;Kim, Young-Chan;Kim, Sung-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.335-342
    • /
    • 2010
  • Bioactive components involved in the tight junction stabilization of intestinal epithelial cells from Korean red ginseng were studied by analyzing transepithelial electrical resistance (TEER) values of the Caco-2 cell monolayer between the apical and basolateral sides for 96 hr. The treatment with less than $20\;{\mu}g/mL$ of the Korean red ginseng extract to the apical side of Caco-2 cell monolayer gave higher TEER values than the control. However, the treatment with more than $130\;{\mu}g/mL$ of the Korean red ginseng extract drastically decreased the TEER values, and these effects were not due to its cytotoxicity. When fractions of low molecular weight compounds, polysaccharides, proteins, saponins, and polyphenols derived from Korean ginseng were applied to the apical side of the Caco-2 cell monolayer, polyphenols showed high tight junction stabilizing activity and saponins showed low activity, but the others showed no significant activity. These results suggest that Korean red ginseng might be useful for the prevention of food allergy by stabilizing the tight junction of intestinal epithelial cells leading to hindering absorption of food allergens.

Decision-Making in Transcatheter Edge-to-Edge Repair: Insights into Atrial Functional Mitral Regurgitation

  • Kim, Joon Bum
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.449-453
    • /
    • 2021
  • The 2020 American College of Cardiology focused update on the mitral regurgitation (MR) pathway provides an excellent summary of the decision-making trees in the treatment of severe MR, in which 2 main branches of the flowchart are suggested depending on whether MR is primary or secondary. Surgery is suggested as preferable over transcatheter edge-to-edge repair (TEER) in primary MR that needs intervention. The decision-making for secondary MR generally prioritizes TEER over surgery according to the guidelines, but further stratification is necessary based on the pathophysiologic mechanisms of MR. TEER is probably the more suitable option in secondary MR caused by left ventricular dysfunction or dilatation, given the high perceived surgical risks, despite the lack of sufficient evidence in support of overt clinical benefits from surgical therapy in these patients. In atrial functional MR associated with atrial fibrillation (AF), however, concomitant ablation of AF seems to be a desirable option, as it has been demonstrated to be a key factor leading to improved survival, reduced stroke risk, and more durable mitral and tricuspid function in patients undergoing mitral surgery. Therefore, atrial functional MR requiring intervention may be best treated by surgical therapy that combines mitral repair and AF ablation in the majority of patients. This particular issue, however, needs further research to obtain scientific evidence to guide optimal management strategies.

Inhibition of Interleukin-1α-induced Intestinal Epithelial Tight Junction Permeability by Curcumin Treatment in Caco-2 Cells in Caco-2 Cells (Caco-2 세포에서 커큐민 처리에 의한 IL-1α로 유도된 소장 상피세포의 tight junction 투과성 저해)

  • Kim, Choon Young
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1082-1087
    • /
    • 2016
  • The intestinal tight junction (TJ) plays an important role as a paracellular barrier. Impaired TJ permeability and enhanced proinflammatory cytokine production are crucial pathophysiological mechanisms in inflammatory bowel diseases (IBDs). Although proinflammatory cytokines, tumor necrosis factor-alpha and interluekin-1 beta, which are markedly increased in IBD patients, have been reported to increase intestinal TJ permeability, the role of interleukin-1 alpha (IL-1α) in the TJ has not been studied. Phytochemicals could prevent proinflammatory cytokine-caused TJ alteration. Curcumin (CCM), a biologically active component of turmeric, has a strong anti-inflammatory activity. The purpose of this study was to elucidate the effect of IL-1α on intestinal epithelial TJ permeability and the role of CCM in IL-1α′s action on TJ in an in vitro intestinal epithelial system, Caco-2 monolayers. The TJ integrity of Caco-2 monolayers was estimated by measuring the flux of FITC-labeled dextran and transepithelial electrical resistance (TEER). Apical IL-1α (100 ng/ml) treatment elevated TJ permeability and suppressed TEER of Caco-2 monolayers. Pretreatment with CCM (20 μM) for 30 min significantly inhibited IL-1α-induced TJ alterations, such as increased TJ permeability and decreased in TEER values. These results demonstrated that IL-1α-induced increases in Caco-2 TJ permeability and CCM blocked the action of IL-1α in the TJ.

Study on the Whitening Efficacy and Skin Barrier by Lysosome-related Organelle Extract (LOE) from Egg White (난백(Egg White)에서 추출한 리소좀 추출물(LOE)의 미백 효능 및 피부장벽에 관한 연구)

  • Choi, Da Hee;Jeon, Gyeongchan;Yoon, Jihee;Min, Jiho;Park, Si Jun;Kim, Jung Su;Hwang, Ee Taek;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.4
    • /
    • pp.389-397
    • /
    • 2019
  • Lysosomes are cellular organelles involved in energy metabolism and intracellular digestion in eukaryotic cells, including protease, nuclease, glycosidase, lipase, and phosphatase. Our previous studies have confirmed that egg white lysosomes had melanin decolorization and reduction activity. However, there have been few studies on skin barrier and skin regeneration as well as inhibition of melanin production by egg white lysosomes on B16F10 melanocyte cell line. In this study, we attempted to identify the effect of lysosome-related organelle extract (LOE) extracted from egg white on the melanin content change and skin barrier enhancement in cells. First, cytotoxicity evaluation was performed on B16F10 melanocyte cell line to confirm the whitening efficacy of LOE. Cytotoxicity by LOE was not observed at 20 mg/mL concentration, but cytotoxicity was observed at 40 mg/mL, and the maximum concentration value was set to 20 mg/mL in all subsequent experiments. LOE samples of 5, 10, 20 mg/mL inhibited melanin production by 61.5 ± 4.0%, 61.4 ± 7.3%, 58.3 ± 8.3%, respectivly, compared to α-MSH, a negative control in melanin contents assay. MITF mRNA expression was reduced by about 39.7 ± 3.2% compared to the α-MSH treatment group. TEER assay using HaCaT showed that LOE increased TEER resistance in a dose-dependent manner, indicating that LOE is involved in strengthening the skin barrier. LOE also increased the TEER resistance under TNF-α treatment. Skin barrier was normally restored by LOE even under the condition of inflammation. LOE had a positive effect on cell division and cell migration promotion, confirmed by the observing the effect of promoting cell migration by LOE through cell migration assay. Taken together, we expect that LOE can be developed as a cosmetic material to enhance has effects on skin regeneration and skin barrier strengthening as well as whitening function if enzyme stabilization and formulation technology are combined.

Primary Culture of Human Nasal Epithelial Cell Monolayer for In Vitro Drug Transport Studies (약물의 in vitro 투과 실험을 위한 사람의 비강점막상피세포 단층막의 일차배양)

  • Yoo, Jin-Wook;Kim, Yoo-Sun;Lee, Min-Ki;Roh, Hwan-Jung;Lee, Chi-Ho;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • The primary culture of human nasal epithelial cell monolayer was performed on a Transwell. The effect of various factors on the tight junction formation was observed in order to develop an in vitro experimental system for nasal transport studies. Human nasal epithelial cells, collected from human normal inferior turbinates, were plated onto diverse inserts. After 4 days, media of the apical surface was removed for air-liquid interface (ALI) culture. Morphological characteristics was observed by transmission electron microscopy (TEM). A polyester membrane of $0.4\;{\mu}m$ pore size was determined as the most effective insert based on the change in the transepithelial electric resistance (TEER) value as well as the $^{14}C-mannitol$ transport study. The ALI method was effective in developing the tight junction as observed in the further increase in the TEER value and reduction in the permeability coefficient $(P_{app})$ of $^{14}C-mannitol$ transport. Results of the transport study of a model drug, budesonide, showed that the primary culture system developed in this study could be further developed and applied for in vitro nasal transport studies.

In vitro Transport of Fexofenadine.HCl in Deformable Liposomes Across the Human Nasal Epithelial Cell Monolayers

  • Lin, Hong-Xia;Lee, Chi-Ho;Shim, Chang-Koo;Chung, Suk-Jae;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.483-489
    • /
    • 2004
  • Fexofenadine HCl is non-sedating histamine H1 receptor antagonist that can be used for the treatment of seasonal allergic rhinitis. The objective of this study was to investigate whether the carriers of deformable liposomes can enhance the transepithelial permeability of fexofenadine HCl across the in vitro ALI human nasal monolayer model. Characterization of this model was achieved by bioelectric measurements and morphological studies. The passage 2 and 3 of cell monolayers exhibited the TEER value of $2852\;{\pm}\;482\;ohm\;{\times}\;cm^2$ on 11 days of seeding and maintained high TEER value for 5 days. The deformable liposome of fexofenadine HCl was prepared with phosphatidylcholine (PC) and cholic acid using extruder method. The mean particle size was about 200 nm and the maximum entrapment efficiency of 33.0% was obtained in the formulation of 1% PC and $100\;{\mu}g/ml$ fexofenadine HCl. The toxicity of the deformable liposome to human nasal monolayers was evaluated by MTT assay and TEER value change. MTT assay showed that it has no toxic effect on the nasal epithelial cells in 2-hour incubation when the PC concentration was below 1%. However, deformable liposome could not enhance the transepithelial permeability $(P_{app})$ and cellular uptake of fexofenadine HCl. In conclusion, the in vitro model could be used in nasal drug transport studies and evaluation of transepithelial permeability of formulations.

Effects of functional nutrients on chicken intestinal epithelial cells induced with oxidative stress

  • Hyun Woo Kim;Seung Yun Lee;Sun Jin Hur;Dong Yong Kil;Jong Hyuk Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.1040-1052
    • /
    • 2023
  • The objective of this study was to investigate the protective effects of functional nutrients including various functional amino acids, vitamins, and minerals on chicken intestinal epithelial cells (cIECs) treated with oxidative stress. The cIECs were isolated from specific pathogen free eggs. Cells were exposed to 0 mM supplement (control), 20 mM threonine (Thr), 0.4 mM tryptophan (Trp), 1 mM glycine (Gly), 10 μM vitamin C (VC), 40 μM vitamin E (VE), 5 μM vitamin A (VA), 34 μM chromium (Cr), 0.42 μM selenium (Se), and 50 μM zinc (Zn) for 24 h with 6 replicates for each treatment. After 24 h, cells were further incubated with fresh culture medium (positive control, PC) or 1 mM H2O2 with different supplements (negative control, NC and each treatment). Oxidative stress was measured by cell proliferation, whereas tight junction barrier function was analyzed by fluorescein isothiocyanate (FITC)-dextran permeability and transepithelial electrical resistance (TEER). Results indicated that cell viability and TEER values were less (p < 0.05) in NC treatments with oxidative stress than in PC treatments. In addition, FITC-dextran values were greater (p < 0.05) in NC treatments with oxidative stress than in PC treatments. The supplementations of Thr, Trp, Gly, VC, and VE in cells treated with H2O2 showed greater (p < 0.05) cell viability than the supplementation of VA, Cr, Se, and Zn. The supplementations of Trp, Gly, VC, and Se in cells treated with H2O2 showed the least (p < 0.05) cellular permeability. In addition, the supplementation of Thr, VE, VA, Cr, and Zn in cells treated with H2O2 decreased (p < 0.05) cellular permeability. At 48 h, the supplementations of Thr, Trp, and Gly in cells treated with H2O2 showed the greatest (p < 0.05) TEER values among all treatments, and the supplementations of VC and VE in cells treated with H2O2 showed greater (p < 0.05) TEER values than the supplementations of VA, Cr, Se, and Zn in cells treated with H2O2. In conclusion, Thr, Trp, Gly, and VC supplements were effective in improving cell viability and intestinal barrier function of cIECs exposed to oxidative stress.

Enhancement of Heparin and Heparin Disaccharide Absorption by the Phytolacca americana Saponins

  • Cho, So-Yean;Sim, Joon-Soo;Kang, Sam-Sik;Jeong, Choon-Sik;Linhardt, Robert-J;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1102-1108
    • /
    • 2003
  • We studied the effects of phytolaccosides, saponins from Phytolacca americana, on the intestinal absorption of heparin in vitro and in vivo. The absorption enhancing activity of these compounds (phytolaccosides B, $D_2$, E, F, G and I) was determined by changes in transepithelial electrical resistance (TEER) and the transport amount of heparin disaccharide, the major repeating unit of heparin, across Caco-2 cell monolayers. With the exception of phytolaccoside G, all of them decreased TEER values and increased the permeability in a dose-dependent and time-dependent manner. In vitro, phytolaccosides B,$D_2$, and E showed significant absorption enhancing activities, while effects by phytolaccoside F and I were mild. In vivo, phytolaccoside E increased the activated partial thromboplastin time (APTT) and thrombin time, indicating that phytolaccoside E modulated the transport of heparin in intestinal route. Our results suggest that a series of phytolaccosides from Phytolacca americana can be applied as pharmaceutical excipients to improve the permeability of macromolecules and hydrophilic drugs having difficulty in absorption across the intestinal epithelium.

Enhancement of Paracellular Transport of Heparin Disaccharide Across Caco-2 Cell Monolayers

  • Kim, Yeong-Shik;Cho, So-Yean;Kim, Jong-Sik;Li, Hong;Shim, Chang-Koo;Linhardt, Robert-J.
    • Archives of Pharmacal Research
    • /
    • v.25 no.1
    • /
    • pp.86-92
    • /
    • 2002
  • The enhancement of paracellular transport of heparin disaccharide using several absorption enhancers across Caco-2 cell monolayers was tested . The cytotoxicity of these enhancers was also examined. The enhancing effects by Quillaja saponin, diponin glycyrrhizinate, $18{\beta}-glycyrrhetinic$ acid, sodium caprate and taurine were determined by changes in transepithelial electrical resistance (TEER) and the amount of heparin disaccharide transported across Caco-2 cell monolayers. Among the absorption enhancers, $18{\beta}-glycyrrhetinic$ acid arid taurine decreased TEER and increased the permeability of heparin disaccharide in a dose-dependent and time-dependent manner with little or negligible cytotoxicity. Our results indicate that these absorption enhancers can widen the tight junction, which is a dominant paracellular absorption route of hydrophilic compounds . It is highly possible that these absorption enhancers can be applied as pharmaceutical excipients to improve the transport of macromolecules and hydrophilic drugs having difficulty in permeability across the intestinal epithelium.

Effects of Fermented Soybean upon Anti-inflammation and Intestinal Mucous Membrane Permeability (청국장의 항염증 및 장점막 투과성 개선 효과)

  • Kim, Hyung-Gu;Lee, Myeong-Jong;Kim, Ho-Jun;Kim, Ki-Cheol;Bose, Shambhunath
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.12 no.1
    • /
    • pp.33-47
    • /
    • 2012
  • Objectives This study was designed to investigate the effects of fermented soybean upon anti-inflammation, cytotoxicity, antioxidant and intestinal mucous membrane permeability by measuring the cell viability, NO (nitric oxide) production, DPPH, Polyphenol, HRP and TEER in cells like Raw 264.7 and HCT 116 using fermented soybean. Methods Raw 264.7 cell and HCT 166 cell were used in this study. And fermented soybean powders were used for the experimental group and soybean powders for the control group. There was inflammation response upon using lipopolysaccharide(LPS). Fermented soybean powders and soybean powders were in a respectively different dose added to the cells with LPS. MTT assay, NO, DPPH and Polyphenol measurement, TEER, HRP were conducted for each cell. The results of this study were presented in mean and standard deviation. Results 1. In Raw 254.7 cells added with $100{\mu}l/ml$ unfermented soybean powders, 104.95% higher than 62.59% was measured. In Raw 254.7 cells added with $100{\mu}l/ml$ fermented soybean powders, there was 74.90% measured higher than 62.59%, which was a significant result. 2. By a gradual increase of unfermented soybean powders like $0.1{\mu}l/ml$, $1.0{\mu}l/ml$, $10{\mu}l/ml$, $100{\mu}l/ml$, the measured NO were also gradually decreased $53.12{\mu}M$, $47.57{\mu}M$, $37.02{\mu}M$, $28.16{\mu}M$. In case of cells added with fermented soybean powders, $43.95{\mu}M$ NO was measured in $0.1{\mu}l/ml$ which is significant, and in other cases, mostly measured over$ 56.72{\mu}M$. 3. It was inferred that fermented soybean powders have anti-inflammatory effects of maintaining intestinal mucous membrane permeability because the measured values of cells in both groups were all higher than $133.62{\Omega}$ measured of cells added with only LPS. And measured values of cells in both groups were all lower than 2.26 measured of cells added with only LPS. 4. In case of experiment DPPH and polyphenol measurement, fermented group was all higher than unfermented group. Conclusion From the results of conducting MTT assay, NO measurement, and TEER, HRP by using cells Raw 264.7 and HCT-116, even though there was no significance in the correlation between cytotoxicity, anti-inflammatory effects, both unfermented soybean powders and fermented soybean powders were shown to have intestinal mucous membrane permeability improvement effects. This effects could be applicable for autoimmune diseases, chronic inflammatory diseases and so additional studies are expected in the future. From the results of conducting DPPH, Polyphenol measurement, Fermented soybean may be useful as potential antioxidant.