• Title/Summary/Keyword: TEBUCONAZOLE

Search Result 100, Processing Time 0.026 seconds

Effects of Different Seeding Rates on Disease Incidences of Wheat Sharp Eyespot and Selection of Fungicides (밀 잎집눈무늬병의 발생에 파종량이 미치는 영향과 방제 약제 선발)

  • Park, Jong-Chul;Lee, Eun-Sook;Cho, Kwang-Min;Lee, Mi-Ja;Kang, Chun-Sik;Choi, Jae-Seong
    • Research in Plant Disease
    • /
    • v.18 no.1
    • /
    • pp.10-16
    • /
    • 2012
  • This study was conducted to examine the effects of the seeding rate on the disease incidence of sharp eyespot(Rhizoctonia cerealis) on three different varieties and to select effective chemicals to control the disease. When the seeds were sown twice as many as the recommendation, the disease incidence increased by approximately 13%. However, the susceptible variety 'Jopummil' alone showed the significantly enhanced disease incidence at a two-fold seeding rate. Two chemicals such as Hexaconazole EC and Tebuconazole EC highly inhibited the fungal growth on agar medium. However, two strobilurin fungicides such as Pyraclostrobin EC and Trifloxystrobin SC were relatively weak. The fungicides tested displayed the similar in vivo antifungal activities as in vitro activities. Hexaconazole EC and Tebuconazole EC showed the strongest both protective and curative activities and the protective activities of the chemicals were generally higher than the curative activities. Hexaconazole EC and Tebuconazole EC controlled the disease by 64% and 73%, respectively, and the two chemicals reduced the disease by 45% and 39%, respectively, when they were applied one day after pathogen inoculation. These results indicate that both Hexaconazole EC and Tebuconazole EC could be used to control sharp eyespot on wheat.

Antifungal activity of pesticides to control dry rot and blue mold during garlic storage (마늘 저장 중 마름썩음병과 푸른곰팡이병 억제를 위한 농약의 살균활성)

  • You, Oh-Jong;Lee, Yong-Hoon;Jin, Yong-Duk;Kim, Jin-Bae;Hwang, Se-Gu;Han, Sang-Hyun;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.331-338
    • /
    • 2007
  • The major fungal diseases which effecting garlic storage are blue mold and dry rot, caused by Penicillium hirsutum and Fusarium oxysporum, respectively. In order to reduce the damage by the pathogenic fungi, here we report the effects of 11 fungicides tested to reduce spoilage during storage of garlics. In the in vitro antimicrobial activity test, the fungicides, diphenylamine, prochloraz and tebuconazole showed 0.3, 2.2, and 1.3 nun inhibition zone to F. oxysporium, and cyprodinil, diphenylamine, fenbuconazole, hexaconazole, penconazole, prochloraz, propiconazole, pyrimethanil and tebuconazole exhibited 0.2, 2.4, 0.8, 0.4, 1.2, 1.5, 1.2, 0.4 and 1.5 mm to P. hirsutum, respectively. To test the in vivo control effect, when the diphenylamine, prochloraz, and tebuconazole were treated by standard concentration, the fungal mycelium of F. oxysporium started to grow 5 days after inoculation, and 80, 63.3 and 83.3% of the inoculated cloves are infected 11 days after inoculation. When the tebuconazole were treated by standard concentration, the P. hirsutum was completely inhibited the growth of the fungi. In case of diphenylamine, penconazole and propiconazole treatment, the P. hirsutum was observed 7 days after inoculation and $20{\sim}23.3%$ of the cloves were infected 11 days after inoculation. When cyprodinil, prochloraz and pyrimethanil were treated, pathogens occurred 5 days after inoculation and $60{\sim}100%$ of the cloves infected 11 days after inoculation. Three fungicides such as diphenylamine, prochloraz and tebuconazole also suppressed remarkably the infection and growth of F. oxysporium and P. hirsutum on garlic when both of the pathogens are inoculated after the garlic cloves were dipped for 10 min in the suspension of each agrochemical. Overall, diphenylamine, prochloraz and tebuconazole showed effective control efficacy on dry rot and blue mold There was significant correlation between in vitro and in vivo assay in diphenylamine and prochloraz to F. oxysporum and cyprodinil, prochloraz and pyrimethanil to P. hirsutum.

Control Activities of Fungicides Against Garlic White Rot Caused by Sclerotium cepivorum (마늘 흑색썩음균핵병에 대한 살균제의 작용 특성)

  • Kim, Heongjo;Kim, Heung Tae;Min, Yi Gi
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • In order to control garlic white rot (Sclerotium cepivorum), which threatens garlic production in farmers fields, soil solarization (solar sterilization), sclerotia germination inducers and effective microorganisms as biological control agents, and chemical fungicides have been used. Among them, fungicide has been largely used to reduce garlic white rot. In this study, the antifungal activities of five fungicides, prochloraz(a.i. 25%, EC), tebuconazole (a.i. 25%, WP), flutolanil (a.i. 15%, EC), iminoctadine tris-albesilate (a.i. 40%, WP) and isoprothiolane (a.i. 40%, EC) with different mode of action, in mycelial growth, sclerotia germination and sclerotia production, were tested. The inhibitory effects of the 5 fungicides on the mycelial growth, and sclerotia germination and production of garlic white rot pathogen (S. cepivorum T11-2) were investigated on potato dextrose agar (PDA) and their control efficacies were evaluated on garlic flakes. There was no mycelial growth of S. cepivorum T11-2 on PDA amended with $0.8{\mu}g\;mL^{-1}$ of prochloraz or $100{\mu}g\;mL^{-1}$ of tebuconazole. Also prochloraz and tebuconazole inhibited perfectively the sclerotia germination of the pathogen at 10 and $1.0{\mu}g\;mL^{-1}$, respectively. In spite of a very low activity of isoprothiolane in mycelial growth and sclerotia germination of S. cepivorum T11-2, it showed a good inhibitory activity against sclerotia production of S. cepivorum T11-2 on PDA amended with $1.67{\mu}g\;mL^{-1}$. Prochloraz, tebuconazole and flutolanil showed above 70% of control value when they were treated at $100{\mu}g\;mL^{-1}$ using the garlic flake cutting-method.

Synergistic Interactions Between Chitinase ChiCW and Fungicides Against Plant Fungal Pathogens

  • Huang, Chien-Jui;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.784-787
    • /
    • 2008
  • Antifungal activity of ChiCW and synergistic interactions between ChiCW with fungicides were investigated. Conidial germinations of phytopathogenic fungi, Alternaria brassicicola, Botrytis elliptica, and Colletotrichum gloeosporioides, were inhibited by ChiCW but A. longipes was not. In addition, ChiCW showed synergistic effect with fungicides Switch (cyprodinil+fludioxonil) and tebuconazole to inhibit fungal conidial germinations. The level of synergism of ChiCW with tebuconazole was higher than that with Switch. The results indicate that ChiCW may exhibit a higher level of synergism with fungicides that have a primary effect upon membranes.

Chronic Toxicity of the Triazole Fungicide Tebuconazole on a Heterocystous, Nitrogen-Fixing Rice Paddy Field Cyanobacterium, Westiellopsis prolifica Janet

  • Nirmal Kumar, J.I.;Bora, Anubhuti;Amb, Manmeet Kaur
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1134-1139
    • /
    • 2010
  • This study explored the chronic effects of different doses of the triazole fungicide tebuconazole on the growth, and metabolic and enzymatic functions of the filamentous paddy field cyanobacterium, Westiellopsis prolifica Janet. The growth of the cyanobacterium was determined by an estimation of the change in pigment contents. Chlorophyll-a, carotenoids, and accessory pigments such as phycocyanin, allophycocyanin, and phycoerythrin were shown to decline over a 16-day period by a factor of 92%, 93%, 83%, 95%, and 100%, respectively, with increasing doses of the fungicide. Metabolic and enzymatic activities were also adversely affected. Over the 16 days, a gradual rise in total phenol content was recorded when Westiellopsis prolifica Janet was treated with 60 ppm of the fungicide, despite the reduction in carbohydrates, proteins, and amino acids by 96%, 92%, and 90%, respectively. Moreover, the enzymes nitrate reductase (NR), glutamine synthetase (GS), and succinate dehydrogenase (SDH) also registered reductions of 93%, 90%, and 98%, respectively. This study indicates that tebuconazole, although an important fungicide used extensively in rice fields, exhibits an inhibitory effect on the growth and metabolic activities of Westiellopsis prolifica Janet and hence possibly on other varieties as well.

Optimum Spray Program of Preventive Fungicides for the Control of Postharvest Fruit Rots of Kiwifruit (참다래 저장병 예방약제 최적 살포 체계 확립)

  • Koh, Young-Jin;Lee, Jae-Goon;Hur, Jae-Seoun;Park, Dong-Man;Jung, Jae-Sung;Yu, Yong-Man
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.205-208
    • /
    • 2003
  • Fungicides of tebuconazole wp, iprodione wp and flusilazole wp were applied for the control of postharvest fruit rots of kiwifruit (Actinidia deliciosa) in the field in 2000 and 2001. More than 3 consecutive applications of these fungicides from the late June with 10-day-interval successfully controlled the diseases. It was found in the field trial in 2002 that 4 consecutive spays from mid of June with 10-day-interval was found to be the most effective application program for tebuconazole wp, iprodione wp and flusilazole wp, The results suggested that currently registered fungicides of benomyl wp and thiophanate-methyl wp can be substituted by tebuconazole wp, iprodione wp and flusilazole wp for the control of the diseases in Korea. Use of these fungicides can restrain emergence of fungicide resistant strains of postharvest fruit rot pathogens with benefit of reduced application of chemicals for food safety and environmental conservation.

Turfgrass Probiotics Reduce Population of Large Patch Pathogen and Improve Growth of Zoysiagrass (유용미생물 처리에 따른 들잔디 재배지의 갈색퍼짐병 병원균 감소와 잔디생육 촉진 효과)

  • Bae, Eun-Ji;Cheon, Chang Wook;Hong, A-Reum;Lee, Kwang-Soo;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.249-261
    • /
    • 2017
  • To prevent large patch disease, caused by Rhizoctonia solani AG-2-2, in zoysiagrass a fungicide, Tebuconazole and three microbial agents Streptomyces sp. Burkholderia sp. and Streptomyces sp. S8 were applied in commercial turfgrass cultivation field in Sanchung, Gyeongnam, Korea. All treatments showed 50% reduced the pathogen population in thatch layer throughout the yearly cultivation period. Not only reduced the pathogen population, Tebuconazole, Streptomyces sp. Burkholderia sp. and Streptomyces sp. S8 treatment also enhanced turfgrass growth, chlorophyll and proline content. Malondialdehyde contents in each treatment was reduced from 6.2~28.9% when compared with the control. Taken together, reduction of pathogen population in soil lowered the disease incidence or severity, and allowed the turfgrass developed as normal condition. The results suggested that the selected microbial agents may use as biological control and growth promotion agents for the Zoysia turfgrass.

Fungicide Screening for Control of Summer Spinach Damping-off Caused by Rhizoctonia solani (Rhizoctonia solani에 의한 여름 시금치 잘록병의 방제를 위한 살균제 선발)

  • Kim, Byung-Sup;Yun, Yue-Sun;Yun, Choel-Soo;Zhang, Xuan-Zhe;Yeoung, Young-Rog;Hong, Sae-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • Damping-off of summer spinach caused by Rhizoctonia solani AG-4 has become a very important disease. For the control of summer spinach damping-off, antifungal activity of thirteen fungicides (pencycuron, trifloxystrobin, pyraclostrobin, azoxystrobin, kresoxim-methyl, validamycin, fluazinam, Benlate-T, flutolanil, cyazofamid, hexaconazole, tebuconazole, prochloraz) were evaluated in vitro and in vivo. Pencycuron, pyraclostrobin, validamycin, fluazinam, Benlate-T, hexaconazole, tebuconazole, and flutolanil significantly suppressed the mycelial growth of the pathogenic fungus. However, trifloxystrobin, azoxystrobia kresoxim-methyl, cyazofamid, and prochloraz did not represent good inhibition on the growth of R. solani. When applied by soil drenching (2,000 mg/L), pencycuron, pyraclostrobin, validamycin, fluazinam, Benlate-T, and flutolanil provided spinach survival ratios of 97.8%, 84.4%, 93.3%, 95.6%, 91.1%, and 86.7%, respectively. Also when treated in seed at 2,000 ing/L, pencycuron and pyraclostrobin displayed survival ratios of more than 85.1%.

Synergistic Interactions of Schizostatin Identified from Schizophyllum commune with Demethylation Inhibitor Fungicides

  • Park, Min Young;Jeon, Byeong Jun;Kang, Ji Eun;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.579-590
    • /
    • 2020
  • Botrytis cinerea, which causes gray mold disease in more than 200 plant species, is an economically important pathogen that is mainly controlled by synthetic fungicides. Synergistic fungicide mixtures can help reduce fungicide residues in the environment and mitigate the development of fungicide-resistant strains. In this study, we screened microbial culture extracts on Botrytis cinerea to identify an antifungal synergist for tebuconazole. Among the 4,006 microbial extracts screened in this study, the culture extract from Schizophyllum commune displayed the most enhanced activity with a sub-lethal dosage of tebuconazole, and the active ingredient was identified as schizostatin. In combination with 5 ㎍/ml tebuconazole, schizostatin (1 ㎍/ml) showed disease control efficacy against gray mold on tomato leaf similar to that achieved with 20 ㎍/ml tebuconazole treatment alone. Interestingly, schizostatin showed demethylation inhibitor (DMI)-specific synergistic interactions in the crossed-paper strip assay using commercial fungicides. In a checkerboard assay with schizostatin and DMIs, the fractional inhibitory concentration values were 0.0938-0.375. To assess the molecular mechanisms underlying this synergism, the transcription levels of the ergosterol biosynthetic genes were observed in response to DMIs, schizostatin, and their mixtures. Treatment with DMIs increased the erg11 (the target gene of DMI fungicides) expression level 15.4-56.6-fold. However, treatment with a mixture of schizostatin and DMIs evidently reverted erg11 transcription levels to the pre-DMI treatment levels. These results show the potential of schizostatin as a natural antifungal synergist that can reduce the dose of DMIs applied in the field without compromising the disease control efficacy of the fungicides.

Occurence of Chemical Resistance and Control of Dollar Spot Caused by Sclerotinia homoeocarpa in Turfgrass of Golf Course (Sclerotinia homoeocarpa에 의한 잔디동전마름병(Dollar spot)의 약제 저항성균 발생 및 방제)

  • 심규열;민규영;신현동;이현주
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Antifungal activity of 20 chemicals registered to turfgrass diseases was evaluated. Among the chemicals, iprodione, benomyl, iprodione+thiram, pencycuron+tebuconazole, hexaconazole, and iprodione+thiophanate-methyl exhibited high antifungal activity to the dollar spot fungus. All isolates were greatly inhibited by the chemicals at the concentration over 32ppm($\mu\textrm{g}$/ml). However, sensitivity of the isolates to chemicals was varied at the lower concentration as 8 and 16 ppm as follows. The isolate originated from Ora golf course was resistant to iprodione and iprodione+thiophanate methyl, Gonjiam isolate to iprodion, Youngpyung isolate to iprodione+thiram, and Dogo isolate to iprodione+thiram, pencycuron+tebuconazole, and tebuconazole. It was found from this study that the varied chemical resistance among the isolates was positively related to the application time of the chemical in the golf course. Consequently, when a chemical was applied more often times than the others to the golf course, the fungal isolates originate from the field showed higher resistance to the former chemical. Effects of the chemicals on control of the dollar spot was evaluated in the field. All tested chemicals revealed over 70% disease control efficacy, however, mepronil+propiconazole was the best showing 83% control efficacy and followed by fenarimo, iprodione, terbuconazole, thiram, and thiophanate-methyl.

  • PDF